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Introduction

The current DoD standards for distributed simulations are generally accepted as being limited in the size and complexity of models they can support.  Recently prototyped infrastructure exhibiting the potential to support larger simulations has been shown in the HLA RTI, STOW and JPSD experiments, and IEEE standardization efforts are underway for the RTI. For systems of the size and complexity of JSIMS, significant advances above and beyond those achieved to date must be made in both the scalability of component models and the supporting infrastructure to meet performance and fidelity requirements. 

A broad range of potential distributed simulation optimizations are possible to support the required increase in scalability.  This ASTT program is limited in scope to infrastructure-level performance optimizations possible via tightly-coupled cluster computing.  Other cluster-based optimizations, such as centralized modeling constructs and administration improvements, are expected to be possible but are not addressed by this research. 

This document describes potential optimizations to the (infrastructure-level) Data Distribution Management problem that are possible within a clustered computing environment.  An architecture to support the analysis of DDM in isolation from other system effects is provided and metrics are defined to measure success.  An experimental approach is defined to examine the hypothesis that clustered computing allows more efficient DDM and thus a larger number of entities may be sustained during a simulation’s execution with fewer physical resources.  And finally, a series of DDM algorithms are proposed for experimentation.

Clustering Simplifies Execution
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Cluster-based simulation provides a set of advantages over traditional fully distributed simulation.  Described in [Mellon98], cluster-based simulation may be summarized as executing the resource-intensive model components of a training exercise within a resource-efficient central environment composed of low-cost workstations connected via a low-latency, high-bandwidth fabric.  Trainers and trainees may remain fully distributed at response cells and training facilities, receiving data from and sending commands to the centralized models over traditional point-to-point WAN links.  This approach eliminates complex WAN implementations required for large-scale distributed model execution and provides greater opportunity for scalability optimizations within the cluster. Additional improvements exist beyond that of the simulation execution itself, including terms of easier system administration and security approaches that centralized physical resources and models provides, and the elimination of extensive, complex WAN implementations.

Clustering Allows Increased Efficiency in the Infrastructure 

Clustered execution is applicable to scalability techniques in general.  Lower latency in data communication and lower CPU usage by the communication components contribute to increasing the efficiency (i.e. the amount of productive work achieved per unit of resources consumed) and accuracy of a simulation. 

Expected DDM Gains from Clustering

Data Distribution Management is one functional area – key to system scalability – that may provide additional efficiency gains for clustered simulations.  The clustered DDM hypothesis may be stated as:
Low latency access to the dynamically changing subscription and publication information resident on each host may be used to increase the accuracy of data distribution and reduce the number of unnecessary transmissions and receptions of simulation state data.

Low latency is expected to be of benefit in providing an accurate, current picture of data availability and data consumption requirements across the set of simulation hosts within the cluster.  This will allow increased accuracy in DDM, reducing the number of ‘false hits’ (unnecessary network receptions by a host) in the system.  This frees both network bandwidth and host CPU cycles, increasing the efficiency of the infrastructure and thereby increasing the scalability of the system. The concept of a false hit is central to this research.  Each time an unwanted message is received by a host, it consumes processing that could be spent on modeling instead. In a point to multi-point environment, this effect is easily multiplied when such a message fans out to many hosts.  

 Further gains are expected in terms of reducing the level of expensive network resources required to support the system. In particular, the number of single transmit, multiple recipient resources required by a cluster-based simulation are projected to be substantially lower than a similarly sized simulation would require in a fully (WAN) distributed execution.  Such resources – IP multicast groups are commonly used – are not available in the quantities required by a JSIMS-sized exercise if current DDM schemes were to be used.
Data Distribution Management: Functional Decomposition

The DDM problem is broken down into two segments: addressing and routing. Addressing requires the system to determine what hosts, if any, require a given data packet.  Routing requires the system to determine the lowest cost mechanism to get a given packet from its source to its destination(s).  ASTT DDM experiments analyze algorithms which collect addressing information and produce efficient data routing schemes.  These two areas are further described below. 
Addressing of data 

The Global Addressing Knowledge problem exists in all distributed simulations.  The problem may be summarized as follows:

· Some amount of the overall simulation state is shared in nature.  Changes to shared state by one entity must be communicated to all relevant entities.

· Not all shared state updates are required by all entities.  Scalable solutions require that state updates must be addressed, i.e. the subset of simulation entities which require each particular state update must be identified.

· A simulation host acts as the agent for N local entities, where each local entity may change some portion of the overall simulation state and in turn requires access to some subset of the overall simulation state.  From a distributed system perspective then, the shared state actions of local entities may be unified into a host-level view, where a host may be considered a producer and/or consumer of simulation shared state.

· The set of consumers associated with any given portion of shared state will vary over time.

· The cost of accurately mapping producers to consumers increases as the number of producers and consumers increases.

· The cost of dynamically connecting producers to consumers increases as the latency between producers and consumers increases.

Routing techniques

Once packet destinations have been established, some mechanism is required to deliver packets in an efficient, scalable fashion.  This is referred to as the routing problem.  Distributed simulation has a number of characteristics unique in distributed computing that complicate the efficient delivery of data.  Due to the nature of simulation shared state, a shared state update generated at one host is generally required at multiple destination hosts.  If standard point to point communication is used, two problems arise.  First, a fully accurate list of destination hosts is required for each state update.  This is often not feasible in WAN-distributed execution, where the set of destination hosts for any given state update may vary considerably over time and near-realtime execution requirements preclude any precise addressing resolution.  Second, the cost of separately generating N copies of the same state update to N destination hosts is quite high: both in terms of network bandwidth and CPU load on the transmitting host.

Single transmit, multiple recipient network technologies such as IP multicast and ATM point to multi-point have been proposed as mitigating techniques for the large volume of network traffic and the CPU load per host of generating multiple copies of the same message. Described in [Powell], three basic classes of routing may be done with such techniques. The routing problem may then be summarized as follows:

· Deliver each packet at a minimum cost to the system overall. System cost is composed of transmission host CPU costs, network bandwidth consumed, latency incurred, background overhead in managing resources, and receiver host CPU costs.

· For each data packet, three things may be established: the source of the data, the destination of the data, and the value of the data.

· Each of those three may be used to as the basis of the routing approach.

Also in [Powell], an analysis concludes that the best routing technique will vary based (primarily) on the number of single transmit, multiple recipient resources available, the load balance of the system, and the number of hosts involved.  Other factors to consider include cost of switching resources, number of false data receptions, and number of transmissions required to ensure complete routing coverage.
DDM: Limitations from WAN Execution 

Limited WAN Resources

The majority of false hits – where simulation hosts receive more data than is actually required – are caused by limitations in network hardware and how simulations distribute data.  State of the art DDM uses single transmit, multiple recipient protocols (such as IP multicast) to distribute data.  Current networking solutions do not effectively support large numbers of such single transmit, multiple recipient resources (or channels).  As industry use tends towards small numbers of such channels, no immediate relief is in sight. Under the STOW program, a ceiling of 3,000 channels was achieved after extensive work by the program itself and supporting hardware vendors. STOW contractors estimated 20,000 multicast channels would be required to support 50,000 entities.  By extrapolation to JSIMS size, approximately 40,000 multicast channels would be required to support 100,000 entities.  The small number of physical multicast channels requires large simulations to ‘bundle’ logical channels together on the same physical channel.  Clearly then, mapping 40,000 required channels to 3,000 physical channels will result in excessive false hits for a JSIMS-size exercise.

Latency Affects DDM Accuracy
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Data Transmission Optimizations

Further false hits occur in WAN execution because of the high latencies separating simulation hosts.  This latency prevents accurate knowledge of what simulation state hosts are currently producing and what state is currently needed by each host.  As a result, hosts are required to request more state than is minimally required to ensure they miss no critical state updates.  False hits result.  To illustrate: at time T, host A controls entity tankA moving across the battlespace. Entity tankA performs a sensor sweep, thus requiring the current state of all other entities that are potentially within sensor radius.  Also at time T host B controls tankB which has just moved into the sensor radius of tankA. TankA must therefore factor the position of tankB into its visibility calculation.  But at time T-X tankB was not within the sensor radius of tankA, therefore host A was not subscribing to tankB positional data.  Clearly, host A must subscribe to tankB positional data earlier than time T when it is actually needed, as requesting it at time T will not result in arrival at time T. In other words, the latency of a subscription must be overcome to avoid validity errors.  Early subscription to avoid validity errors may be referred to as over-subscription, where hosts subscribe to more data than is actually required to ensure the correct data is available at the correct time.
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Over-subscription causes logical false hits (those not associated with channel bundling) because simulation hosts must request all potentially required data, some of which is never actually used. High latencies in the WAN increase the effects of this problem, as hosts must factor in how fast data will start arriving after it is requested.  The problem is also complicated by rate of entity movement and potential changes in entity directions (which affect what state may be required), as well as allowing for dropped packets in some protocols.  Simple solutions to this problem are based on increasing the sensor range of entities to include the maximum entity motion possible within the maximum latency of the WAN. As shown in Figure 2, the state for only three other entities is required to model the sensor sweep.  But if the sensor radius is increased, (unnecessary) state data for six other entities must be requested.

DDM: Improvements within a Cluster  
Clustering allows for several improvements to the DDM problem.  First, most simulation state updates do not leave the cluster: the volume of WAN traffic is substantially reduced.  This eliminates the need for large numbers of expensive multicast channels in the WAN. Second, internal to the cluster, fewer multicast channels may be required to distribute data.  This is expected due to a number of factors:

· The latency between simulation hosts is much lower
.  This should allow hosts to reduce the amount of over-subscription done to accommodate data delivery delays in a WAN environment.  A substantial reduction of traffic within the cluster is expected which in turn reduces the number of channels required by some DDM algorithms.

· WAN DDM schemes are currently static in nature: simulation state is mapped to channels in a pre-determined fashion and not modified over the course of the simulation.  The actual data flows will vary over time as different battlefield conditions occur in the simulation, but WAN latencies have to date precluded DDM algorithms from attempting to dynamically allocate resources as loadings shift. This requires over-budgeting: multicast channels must be allocated on a ‘possible load’ basis, not actual load.  At any given time, some channels will be under-utilized. Cluster DDM algorithms are expected to react dynamically to current data flow conditions and fully utilize all multicast channel resources at all times.  This should reduce the number of required channels.

· Higher efficiency of clustered execution will result in more entities per host. In a load-balanced system, fewer inter-host data exchanges should occur (more entities deal only with local data, not remote).  This reduces the volume of data to be mapped to multicast channels and thus reduces the number of required channels.

· A number of novel schemes to address dynamic DDM may be possible within a cluster that are precluded in the WAN environment because of the high latency in distributing new DDM knowledge. Source-based and destination-based data distribution [Powell] are expected to produce an efficient utilization of the available channels beyond what is possible in a WAN and thus lowering the required number of channels.  Increased efficiency in the infrastructure should also lead to lower hosts counts for a given number entities, thus further increasing the usability of these algorithms.

Architectural Abstractions Used in the Experiments

A key decision in the ASTT-PP effort was to first analyze the sample distributed simulation systems both postulated and in use, then to establish an abstracted architecture which encompasses both existing approaches and proposed approaches.  By performing experiments at the common-abstraction level, a reasoned argument may be made that the cluster computing results obtained within ASTT-PP are applicable to the set of source distributed simulation systems.  Further, it allows static assumptions to be made regarding areas of the system overall which this program does not address. Finally, working at the abstract functionality level in the architecture allows for the identification of similarities with other distributed computing problems and the incorporation of techniques from those fields.

Key Abstractions

The following sections outline the important functional areas identified during this analysis and the abstractions chosen to represent them. Where possible, terminology has been drawn from existing sources.  Terms from the DMSO RTI 2.0 and Thema internal architectures are used extensively. A conceptual architecture is then proposed which captures those basic distributed simulation functional areas and sets the terms and scope within which individual experiments will be defined, conducted and analyzed.  Note that not all functional areas identified fall within the scope of ASTT cluster research.  Some exist within the architecture strictly for the purpose of illustrating their relationship with the infrastructure, and will not be explored under this ASTT project.

Communications within a Cluster

Of the various low-latency hardware systems under consideration, a number of different communication styles are supported.  For example, SCI and SCRAMnet provide forms of shared memory across distributed hosts, Myrinet supports only point to point traffic, ATM provides for point to point or point to multi-point traffic and switched Ethernet supports IP multicast.  For the purposes of this architecture, the term communication fabric
 is used to encompass the broad set of physical communication devices.

To allow accurate comparison across differing communication fabrics – each with different physical implementations and APIs –  a single abstract interface is proposed.  This channel abstraction will be implemented in the most efficient way possible for a given platform and the same test suites will be run across all platforms. Channels are multiple-transmitter, multiple-receiver objects. Note that the number of channels which may be efficiently supported will vary across platforms, as will the cost of joining or leaving a channel.  Further, a channel implementation may need to restrict the number of transmitters or receivers on a given channel to make more efficient use of the communication fabric (e.g. an ATM implementation prefers one transmitter). In order to achieve optimal results, higher layers of the architecture must be able to determine said costs and restrict themselves to an efficient channel usage scheme for a given fabric.  This technique allows for experimentation with existing but untested theories such as whether destination-based routing will be more efficient than value-based routing over point to multi-point channels [Powell]. Further note that the architecture must prevent such tailoring from affecting how client applications are built: only the efficiency of the infrastructure should be affected.

Remote Controllers

The experimentation architecture provides for remote controller connectivity via a local agent construct.  As shown in Figure 1, an agent is attached to the cluster on behalf of a remote controller.  Agents interact with clustered models strictly as another abstract entity producing and consuming data.   This allows an agent to build an accurate picture of the virtual world to match its remote controller’s needs.

Agents also interact with the remote controller. To make efficient use of the WAN, the agent may use application-specific knowledge regarding the remote controller to transmit a limited set of the local picture to the remote controller. Predictive contracts may also be constructed to effectively hide the latency between the controller and the agent.

Also note the similarity of remote controller agents to other remote component problems.  The basic agent construct is also used in the RTI 2.0 design to allow local clustering of hosts for hierarchical system scaling techniques [Bachinsky, Mellon, et al]. Within this architecture, multiple clusters would be handled in the same fashion (i.e. a remote cluster would register a local agent to deliver a tailored picture of the data it requires).

Application-level Data Transmission Optimizations

For the purposes of functional isolation, a number of other scalability techniques are described in this architecture.  Functions such as predictive contracts, load balancing, variable resolution data and similar techniques are required to achieve large scale execution in any distributed simulation. These DTOs are not research tasks under ASTT-PP, thus their effects are abstracted into a simple reduction in the number of required data transmissions to maintain a sufficiently accurate view of shared state. These functional areas exist in this architecture in the Data Transmission Optimizations layer.

Interest Management

Interest Management is another abstracted component.  Some portion of the system overall is responsible for translating data consumption requirements and data availability from application-specific terms into infrastructure-neutral terms.  This function is referred to as Interest Management. In the JIMS CI, this is done by the MMF.  In the HLA, this is done as a combination of application and RTI functionality.  For the purposes of our architecture, we assume that some (non-infrastructure) component has done the above conversion and all data updates are tagged with a unique, neutral identifier.  These tags are used as the means by which simulation hosts state their subscription and publication information to the infrastructure.  With no common reference component available, the Inter-host Data Manager is introduced to contain this function but is not explored under this program.  The concept of a tag is central to this research. It allows the infrastructure to understand the data offerings and needs of the application, but in an abstracted form. The argument is clear that an infrastructure devoid of application specific extensions must treat subscription information abstractly. We have chosen the simplest possible abstraction that still supports segmentation of application data into a large enough number of pieces that efficient data distribution is still possible. More complex segmentation mechanisms can easily be layered above the tag concept, and for our purposes is considered part of the application.

The abstraction of Interest Management accomplishes two goals.  First, an application-dependent feature is removed from the experiments, eliminating a large variable and allowing focus on infrastructure issues.  Second, resulting algorithms are application-independent and results may thus be applied in both JSIMS and RTI system analysis.

Architecture Summary
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A summary description of the ASTT architecture components shown in Figure 3 is provided below.

Entities

· Entities are the modeling components of the simulation.  Entities have both public and private state, and (in this abstract architecture) communicate with each other via changes to their public states. The union of all entities’ public state is referred to as the simulation shared state. 

· Entities do not ‘pull’ shared state from other entities.  Interest expressions are used by each entity to describe what types (and values) of shared state is currently required.  The simulation infrastructure is responsible for ‘pushing’ all shared state matching an entity’s interest set to that entity.

· Entities describe their public state to the infrastructure in the same syntax as interest expressions, and notify the infrastructure when the state is modified.  The infrastructure uses this information in ‘pushing’ state updates to the relevant consuming entities.  A push-based approach is considered central to achieving scalability.

Data Transmission Optimizations

· A (non-infrastructure) component of the simulation is responsible for minimizing the number of required inter-host data transmissions caused by changes to the simulation’s shared state.  A broad set of techniques to accomplish this task have been identified by the community and are grouped in this architecture under the heading of Data Transmission Optimizations (DTOs).  

· DTOs range from load balancing (where entities which frequently communicate are allocated to the same host) to variable resolution data and predictive contracts.  

· Key to successful DTOs is the notion of ‘sufficiently accurate representation of the global shared state’, where slightly imprecise views of shared state are much cheaper to maintain but do not invalidate the models using the shared state.  

· DTOs are not modeled under this program, but their effects are estimated by a simple reduction in the number of required inter-host data transmissions.

Inter-Host Data Manager

· The Inter-Host Data Manager is responsible for bringing data required by local models to the local host.

· It uses interest statements from its local clients to determine what shared state is required locally.  These entity-level interest statements are translated by the Data Manager into some form of network tags, which are abstracted representations of the interest statements. 

· Tags are expected to be efficient to evaluate and require no knowledge of the application's data.  During the abstraction process, tags are further expected to be low enough resolution such that tag subscriptions change infrequently, easing the load on Data Distribution [Mellon96].   These tags are given to the GAK as descriptions of what data is required at this host.

· Using the same abstractions as in the translation of interest statements to network tags, the Data Manager also tags the local state changes by its client entities. Tagged state changes are then sent to the Data Distributor for assignment to a transmission channel.

· This component is modeled, not implemented, in ASTT experiments.  Abstract tags are assumed to have been created by some exterior mechanism, such as routing spaces or predicates. 

Data Distribution: Global Addressing Knowledge

· The GAK is responsible for an efficient mapping of tagged data to the available set of network channels.  Static mappings may be used, or mappings may vary based on feedback from current network conditions.  A range of mapping schemes may be found in GAK Algorithms under Test, below.

· Network factors which must be considered: raw costs of a transmission, number of channels effectively supportable by the hardware, cost of joining or leaving a channel, unnecessary receptions, and unnecessary transmissions.

DD: Obtainer

· Using the mapping provided by the GAK, the Obtainer simply attaches to the receiving end of all channels that may contain a tagged state update required at this host.  

· Note that due to multiple tags being assigned to a single channel, state updates may arrive that are not required locally.  Such updates are considered ‘false hits’ and are not handed up to the application.

DD: Addresser

· Using the mapping provided by the GAK, the Addresser simply places a tagged state update on the correct channel for transmission to other hosts.

Channels

· Channels are the communication abstraction for distributed hosts.  Channels may have 1..N producers and 1..N consumers. 

· Channels may restrict the number of producers and/or consumers to best match a given hardware system. Consequently, the GAK mechanism must account for this restriction in its use of a channel to interconnect hosts.

· Channels may bundle data packets for extra efficiency.

· Channels present a multiple recipient API to clients, which is then implemented in whatever manner the hardware efficiently supports.  Due to hardware restrictions, there may also be a limit on the number of available channels. These details may be factored into a GAK algorithm through parameterization, and the algorithm will work within the limitations.

Communication Fabric

· The Communication Fabric is the underlying connection hardware between hosts in a distributed system. It may be shared memory, point to point messaging, etc.  It may or may not support point to multi-point or IP multicast. 

· The fabric is used by Channels, which implement their multiple recipient API in terms of the fabric's best possible delivery mechanism.

Experimental Approach and Analysis

GAK Problem Summary

The cluster architecture described above provides a useful decomposition of the data distribution management problem.  The simulation produces and requests data based on semantic tags.  The modeling layer involved in an exercise must agree on the mechanism to associate semantic information to the tags.  The tags, as far as the simulation infrastructure is concerned are semantic free, and are treated simply as a set of buckets containing a particular volume of data.  Thus tag semantics (e.g. sectors, entity types, ranges of data values, …) are not under analysis in ASTT.  Similarities may be drawn to the HLA RTI 1.3NG architecture, where semantic information regarding shared state values and federate subscriptions is expressed via routing spaces.  However, internal to the RTI, all routing space data is referenced as abstract tags describing data items and federate data requirements.

As in the RTI, it is the responsibility of the GAK component to map tags to communication channels (Figure 4). The goal of the tag to channel mapping is to reduce unwanted data from being received by a host, while simultaneously interconnecting all hosts according to their subscriptions within limited channel resources. A host that subscribes to a channel to receive tag X may receive other (unwanted) tags that are mapped to the same channel. This mapping is complicated by factors such as: a small number of channels compared to the number of tags typically used; the cost of computing the mapping, the dynamic nature of host subscription and publication data; and the latencies between hosts, which delays the communication of current subscription data and the dissemination of new channel maps.   
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Figure 4: GAK performs tag to channel mapping
Experiment Inputs

All ASTT GAK experiments consist of running a given data set over the GAK algorithm under test to determine the efficiency of said algorithm for that data set.  To allow comparisons of differing infrastructure algorithms, data sets are fixed: i.e., a data set is a constant, named object that provides identical inputs to each experiment.  Data sets consist of simulation state changes (per host) and subscription / publication information (also referred to as interest data sets).  

As JSIMS data becomes available, it may be compared to the data sets used in ASTT experiments.  From this, reasonable estimates of JSIMS performance in cluster environments may be inferred. Alternately, new data sets could be generated to match provided JSIMS input/output information and a subset of experiments run with the new data sets.

Experiment Structure

This section defines the experimental approach that will be used to test alternate GAK algorithms.  A simulation of a physical cluster (number of hosts, type of fabric) will be used to drive a given data set (as defined above) through a set of GAK algorithms.   For each data set, an oracular GAK will also be simulated, providing an upper bound of performance to measure other GAK algorithms against.  Promising GAK algorithms will then be run in a physical cluster (with the same data set as input to a parameterized application driver) for further experimentation.  Performing this first-level analysis of GAK performance in a simulated cluster environment allows for faster turnaround on algorithm development and experiment cycling, as well as better control of inputs and metrics when performing analysis of unusual GAK behaviour.
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Figure 5: Phases of Experimentation

The experimental cycle shown above consists of three phases:

Data Set Generation

Generate entity-level subscription/publication traces (as described in Shared State Trace Files, below).  Variables are: number of entities; number of simulation hosts; rate of motion; and sensor range.  Constants are: application-level tagging scheme and entity behaviours.  This mix allows experimentation with the driving factors for infrastructure scalability and assumes a reasonable level of scalability within the modeling level of the overall system.

A variety of data sets will be used to measure GAK performance.  Key variants and the specific question they answer (in addition to the basic question of scalability) are listed below. 

· Small to large numbers of entities per host.  Entity per host count was chosen to examine if increasing local entity count reduces or increases remote data requirements.  Entities require most data on a ‘nearest neighbor’ basis.  If enough (load-balanced) entities may be gathered on a single host, many may not require remote data at all.

· Small to large numbers of fast moving entities.  Fast moving entities are expected to generate a high rate of change to both subscription and publication patterns.  The ability of a GAK to support such changes is a key measure of success, as the cluster-optimized DDM hypothesis states that low-latency (i.e. cluster) access to current subscription/publication patterns allows better mapping of data flows. Further differences are expected between static and dynamic GAKs. 

· Large sensor radius.  The JSTARS problem, where some entities require access to extremely wide area data, is expected to stress any data distribution scheme. GAK algorithms must therefore be studied to determine if they can prevent ‘channel overload’ where traffic volume on a given channel is too high despite having a balanced mapping of tags to channels (large sensor range is expected to produce an unequal volume of traffic per tag).      

· Other data sets will be generated on a case by case basis to examine instances of unexpected GAK behaviour.

GAK Comparisons

The second phase tests GAK algorithms on a simulated cluster. The trace file data is read by driver programs that make subscription and publication calls to the GAK algorithm under test.  Performance metrics are gathered for later analysis.  Rapid turnaround and deterministic execution were the dominant factors in choosing a simulated approach.  The simulated cluster is based on results from the earlier ASTT experiments on cluster hardware performance.  In those experiments [Mellon98], it was found that the latency difference between cluster hardware implementations was negligible when compared to that of a fully-distributed system and reasonably constant across an implementation. Bandwidth – generally considered not to be an issue for any simulation – across all hardware implementations was more than sufficient.  Accordingly, the cluster simulation does not include bandwidth effects, and latency is a constant for any given cluster hardware solution under test.  By eliminating the variance of latency and bandwidth, these GAK experiments focus on the key issue identified in STOW and other large-scale simulation exercises: the number of network accesses per host and the CPU cost in servicing said accesses. Also to isolate the network access issue, operating system variances such as context switching, buffering and data copying are rolled up into a single constant per cluster hardware implementation: CPU cycles per access.

Cluster Implementations

The third phase consists of verifying promising simulated cluster experiments using physical cluster hardware.  The performance should be close to that measured in phase two, and any substantial differences will be analyzed to understand their cause.  The purpose of this phase is both to validate the simulated cluster/GAK experiments, and to provide insight into the numbers of entities which may be achieved in a clustered simulation.

Shared State Trace Files

Data sets are generated by tracing the inputs and outputs of abstracted, platform-level entities interacting in a 2D space. A platform level of abstraction was chosen to correspond to the current de facto standard metric ‘entity count’ and to allow comparison to the approximate 100,00 to 300,000 platform-level entities JSIMS is expected to support.  As new models are under construction for JSIMS, no input/output values for entities are available, nor is quantifiable data available on the JSIMS interest management scheme.  Accordingly, input/output values are estimated from STOW entity behaviours, and a simple grid-based interest management scheme (similar that used in STOW, SF Express, and RITN) is used.  Input and output values consist of shared state updates and subscription information.  Shared state updates are of a fixed size for a given data set, and are tagged with the current sector_id  of the owning entity.  Subscription information is also in terms of sector_id tags.  

The abstracted entity model used in trace file generation is referred to as ‘Paintball’.  The Paintball simulator is a battlefield simulation of hunters and hunted entities.  It has been built using the existing Thema simulation library. Paintball is controlled by an extensive set of parameters, documented separately.  Significant parameters include: the number of hunters and hunted, sensor radius, speed, and behavior.  Configurations can be quickly designed to address new questions.  

Trace files are required by the experiments to describe data flows at the host level, thus part of generating a trace files involves mapping simulated entities to some number of simulation hosts. A (static) round-robin mapping scheme is used to give a constant level of load balancing across all experiments.  No experiments are done on alternate load balancing schemes.

Testing the Clustering Hypothesis

We will test the clustering hypothesis by first examining the following hypotheses:

· Smarter GAKs reduce the amount of data moved between CPUs. While physical multicast may optimize away duplicate sends, logically, many copies of data are transmitted through the network when a poor connectivity map is used. On point-to-point networks this bandwidth waste is clearly a problem that may be optimized using smart GAKs that minimize the number of receivers of any piece of data. The metric used to indicate this is the total number of messages sent.

· Smarter GAKs reduce the number of unrequested messages arriving at a host on a channel. If there is even one host that does not require all data, a smart GAK will be able to do better than a broadcast GAK by arranging for that host to receive less data. The metric used to indicate this is total number of false hits.

· Smarter GAKs increase the overall efficiency of the infrastructure.  A certain minimal number of messages is required to share simulation state across hosts. Any other state-related network accesses, such as false hits and internal GAK communication, are considered overhead.  The metric for overall efficiency is total communication incurred versus minimal communication required.  

· Smarter GAKs require fewer channel resources.  The number of channels available at the hardware layer is expected to be smaller than required if simplistic GAK algorithms are used.  Channel requirements are investigated by inspecting GAK efficiency over a varying number of available channels.

We will test these hypotheses by varying input data sets and input parameters to the cluster simulation. We will observe the effect of those variations on the instrumentation output from the simulation and analyze the sensitivity or shape of the curve of the output values as it changes with respect to the input variations. In particular, we will compare the results obtained from simulations that use each GAK algorithm under study. Ideally, we wish to find the GAK algorithm that minimizes false hits and total messages. The consequence of that discovery is a system that minimizes infrastructure overhead, and maximizes the utilization of the hardware on modeling activity. This efficiency directly impacts the ability to achieve larger scale simulations.

To perform the cluster scalability analysis, we will inspect the output as we change the number of entities. The number of entities used to create the initial data sets will be varied from low to high. The scalability metrics (e.g. total bandwidth, or number of false hits) for each data set will then be analyzed for sensitivity to entity count. From this analysis we should be able to determine the viability of any GAK algorithm, its ability to adapt to larger numbers of entities, and ideally, the upper bound on the number of entities it may support.
Metric visualization

A special graphical display tool is being developed which shows the entity motion on a 2-D geographic display.  Overlayed on this display are measures of GAK tag to channel mapping. This will assist the GAK developer to see the effectiveness of the GAK algorithm and to understand the modeling layer’s behaviour (such as rate of entity interactions) on GAK performance. The display will highlight areas of high false hit rates. This tool also give insight into any load imbalances caused by the static round-robin scheme used, as well as aiding in sensor-range / sector-size determination.

Expansions of Basic Experiments

The results of the initial experiments will drive the definition of new scenarios, GAKs and metrics.  This process of definition, experimentation and evaluation will continue until we thoroughly understand the use of GAKs within the clustered simulation environment

DDM Metrics

Given that the focus of this research is infrastructure optimization, infrastructure-centric measures are defined.  In particular, this research addresses only the inter-host data communication aspects of simulation infrastructure.  As a result, we assume the abstraction of any and all models involved in a particular simulation into a set of generic simulation entities that produce and consume data at defined rates. Issues such as CPU loading per entity and load leveling of entities across CPUs are above the infrastructure level and thus are not factored into these infrastructure metrics.   Further, Time Management overheads and impact on data communication will vary greatly across simulations.  A near-realtime approach similar to STOW and DIS-based modeling is consistent with proposed JSIMS Time Management and will be used for these ASTT communication experiments.

Two levels of metrics will be used across the set of ASTT experiments.  A high-level set of metrics is defined to allow estimating the impact of cluster-based simulation on supportable entity count and physical resource requirements.  These are referred to as scalability metrics.  A more detailed set of metrics is also defined to allow comparison of differing implementation schemes internal to the cluster infrastructure.  Implementation areas of specific interest are DDM algorithms and inter-host communication costs. These metrics are referred to as infrastructure metrics.

System Scalability 

A system with good scalability has an (total) overhead that increases linearly as the system grows in size. Conversely, a system with poor scalability has overheads that increase exponentially as the system grows in size.  In a similar vein, current systems are said to achieve a scale of N entities for a given configuration.  Thus, scalability is a measure of system growth efficiency: how large may the system be grown before overhead becomes the dominant resource consumer. A simulation system may be grown in size across a range of variables, at both the modeling and infrastructure levels of the system.  Examples include infrastructure-level effects such as number of hosts, communication fabric responses to increased load, load balancing and hierarchical system optimizations.  Further factors from the modeling level of a simulation include model size/fidelity and interest management.  Examples of variables affecting model fidelity and size from the ModSAF community are: number of entities, intelligence of an entity, dead reckoning timeout levels, acceptable levels of lateness for shared data, dynamic terrain, turret motion models.  Routing spaces, sectorization and similar techniques provide examples of model-level interest management affecting overall system scalability.

From the above factors involved in establishing the scalability of a system, it is clear that scalability cannot be precisely measured as a single number: too many overlapping variables exist, each with a differing impact on scalability. As a result, scalability is usually expressed as a curve for one sub-factor (such as number of processors), not as a single number for overall scalability. Because it rolls up too much information, scalability does not provide sufficient insight when comparing two systems.  However, exercise designers require some form of a high-level system metric.  First, exercises can be roughly defined in numbers of platform-level entities required to populate a sufficiently large battlespace.  From the number of platform-level entities, the level of fidelity required to meet the needs of the training audience, and an approximation of the system’s scalability, the resource base required to run a given exercise may be established.  Conversely, federations with a fixed resource base (e.g. number of simulation hosts) may establish the approximate level of fidelity or the number of entities possible for a given exercise.  To meet the needs of federation designers, the achieved scale measurement will be used in these ASTT experiments.  Achieved scale is defined as the number of abstract entities supportable for a sustained period over a fixed set of infrastructure components.  For a given achieved scale number, the type of abstract entities used in establishing it will be held constant (see Experiment Inputs, above), as will the infrastructure implementation and resource base.  In the final physical clustering experiments, the number of entities will be increased until the inter-host shared state update latency falls to the current acceptable standards of latency in distributed simulation
, thus providing an achieved scale of N entities over a given infrastructure implementation
.  This will allow definitive comparisons of infrastructure implementations (both clustered and distributed) for efficiency, cost, and entity count.

Intrinsic Scalability 

From an ASTT infrastructure perspective, a deeper insight into why a given system has good or poor scalability is required.  However – as noted above – significant factors affecting system scalability are outside of the infrastructure.  This implies that a system with an ‘optimal’ infrastructure may still exhibit poor scalability, due to scaling problems introduced by the modeling layers of the system.  Thus while modeling behaviours are outside this program’s scope, to understand the performance of a given infrastructure one must first determine if the modeling layer itself is scalable.  The term intrinsic scalability is introduced to describe the loading characteristics of a system’s models.  

Intrinsic scalability in the context of data distribution refers to the communication load the simulation places on the infrastructure.  Simulations which cause large volumes of data to flow between machine hosts tend to poor intrinsic scalability.  Key factors affecting intrinsic scalability are: load balancing of entities, data production / consumption rates, and scope of data subscriptions.  Intrinsic scalability is a key measurement as it establishes what a given system’s requirements are and how well an infrastructure could perform under that loading.  

To illustrate: a common example used in scalability analysis is the ‘ten thousand tanks in a parking lot’ problem, where all entities are visible to all other entities and thus all state changes need to be sent to all simulation hosts.  This system has poor intrinsic scalability and will thus have poor achieved scale, as the infrastructure is required to distribute all data to all hosts.  However, if the ten thousand tanks were distributed across a battlespace with limited visibility, the intrinsic scalability of the simulation would rise (as all data is no longer required at all hosts).  

The relationship between intrinsic scalability, infrastructure implementations, and achieved scale becomes clear: a high achieved scale for a system requires both good intrinsic scalability from the modeling component of the system and a good infrastructure implementation to support the models. The cases are as follows.  

· Poor intrinsic scalability produces a high, non-scalable loading on the infrastructure.  Neither good nor poor infrastructures will show a high achieved scale rating.

· With good intrinsic scalability, an infrastructure can do an efficient job of distributing the required data, keeping overheads low. A high entity count may then be achieved.  
· However, a poor infrastructure implementation will result in high overheads, even if intrinsic scalability is high.  This will effectively lower the achievable entity count for that system.  

To summarize: Intrinsic scalability sets the limit of how well any infrastructure could perform on a simulation’s specific configuration, and achieved scale is the measure how a given infrastructure did perform on a simulation’s specific configuration.

Using the above definitions, establishing a system’s intrinsic scalability from an infrastructure viewpoint becomes simple.  An oracular infrastructure will be simulated and a trace of the modeling layer’s I/O will be run through it.  The oracular infrastructure’s characteristics are: perfect DDM knowledge, unlimited channels, and zero background costs. Thus, from zeroing out all infrastructure overheads, we then  have an upper bound to measure experimental algorithms against, using any of the infrastructure metrics defined below.  Note that the oracular infrastructure must be run against all data input sets, as intrinsic scalability will vary from model to model.

GAK Measure of Effectiveness

A simple, top-level measure of a GAK’s effectiveness is required.  As baseline performance is established by the oracular infrastructure, the natural GAK MOE is the number of system-wide transmissions and receptions of data packets (or ‘wire accesses’).  The oracular infrastructure (by using infinite channels) will produce the lowest possible number of wire accesses – the most expensive operation in data distribution – where a physical GAK implementation will result in the minimum number of wire accesses plus unnecessary accesses caused by false hits and background GAK traffic. By comparing actual wire accesses for an infrastructure against the optimal number of accesses, a percentage efficiency rating for a GAK is achieved.

It is expected that a ‘good’ GAK will minimize the number of unnecessary wire accesses.  This drives the efficiency of the infrastructure up or down.  In terms of more detailed metrics, a well-behaved GAK will: minimize false hits per host, minimize inter-GAK communication, and minimize GAK computation cost. Of secondary importance is minimizing the host join/leave count. 

Internal Infrastructure Metrics 

Infrastructure metrics related to inter-host data communication performance are defined below.  This metric set provides the basis for analysis of algorithm implementation options within the simulation infrastructure and hardware performance across a set of defined experimental inputs.  They are defined in terms of the ASTT architecture.  We focus on GAK cost/benefit analysis, and in particular, the efficiency of GAKs in reducing the number of false hits by accurate mapping of data to channels.  Each metric is defined in terms of: what it measures, how it is captured, and how it used in analysis. 

System Traffic: 

· The number of packets transmitted across the system as a whole.  Includes simulation state and overhead traffic (bucket
 and total).

· Summarized from inter-host traffic counts (below).

· Used to estimate bandwidth requirements for a given scenario.  

Inter-Host Traffic:

· The number of packets transmitted between each pair of simulation hosts.  Tracks both simulation state and overhead traffic (bucket and total).

· Captured via snoopers inserted just before wire_access calls at both transmitting and receiving hosts (at the bottom of the Data Distribution layer).

· Used to find dropped packets and hot spots in the network (i.e. unusual volumes of traffic between hosts).

Simulation State Traffic

· The number of network packets containing simulation state update(s) (bucket and total).

· Packets from the model drivers are tagged as simulation state. Snoopers keep a clicker count at sending and receiving ends (at the top of Data Distribution layer).

· This is the minimum number of packets required to support the simulation.  It is used in establishing infrastructure efficiency (below).  

Overhead Traffic

· All network traffic that is not simulation state updates (bucket and total).

· Overall traffic minus simulation state traffic.

· Used as the top-level MOE of an infrastructure.  A ‘perfect’ infrastructure will have zero overhead traffic.

False Hits (per host)

· The number of simulation state packets that were received by a host, but not requested (bucket and total).

· Sum of false_hits per channel (below).

· Used to evaluate the effectiveness of a GAK, in particular, its channel bundling performance.  A low false_hits value is good, zero is perfect.  

False Hits (per channel per host)

· The number of simulation state packets that were received by a host on a single channel, but not requested (bucket and total).

· Based on tags_subscribed (below) against tag_received. 

· Used to determine if a given channel is producing a high false hit count for a given host.

False Hits (per channel)

· The number of simulation state packets that were received by a host on any channel, but not requested (bucket and total).

· Summed from false_hits_per_channel_per_host. 

· Used to determine if a given channel is producing a high false hit count overall.

Channel Traffic Density

· The number of simulation state packets that were transmitted on each channel (total and per bucket).

· Snooper in DD_send.

· Used to determine if channels were under- or over-utilized.   

Tag production rate per host

· This is the number of packets sent by a host on a particular tag over a given period (bucket).

· Counted by a snooper at the DD_send layer.

· Used post-mortem to analyze how well a GAK did against traffic flow requirements.

Tag subscriptions per host

· A list of the tags that a host has been subscribed to since the last measurement was taken.  

· Snooper at the DD subscription level.  

· Used to establish false hits, and to (essentially) set an ‘update subscription list’ cycle.  Also used to record (on a bucket-basis) the actual subscriptions of a host for post-mortem analysis, and for feedback GAKs to use.

Tag production rate (global)

· Total system traffic volume for a given tag over a given period (bucket).

· Summed from tag_production_per_host.

· Used post-mortem to analyze how well a GAK did against traffic flow requirements.

Tag subscriptions (global)

· Total system requests for a given tag over a given period (bucket).  

· Summed from tag_production_per_host.

· Used post-mortem to analyze how well a GAK did against traffic flow requirements.

Channel joins per host

· This is the number of channel subscriptions made by a host (bucket and total).

· Snooper at the top of the network layer.

· Used in estimating GAK costs (channel switches are expensive in some fabrics), and to detect thrashing in GAK channel allocation.

Channel leaves per host

· This is the number of channel subscriptions made by a host (bucket and total).

· Snooper at the top of the network layer.

· Used in estimating GAK costs (channel switches are expensive in some fabrics), and to detect thrashing in GAK channel allocation.

Join / leave ratio per channel 

· This is the number of channel subscriptions made by a host (bucket and total).

· Summed from channel_info_per_host.

· Used to detect unstable channel use by a GAK.

Inter GAK communication

· Number of messages exchanged between GAK components located across hosts.  

· Snooper at DD_send (per host) and summed.

· Used in cost / benefit analysis of a GAK (when multiplied by message_cost).  Essentially a finer view of system_overhead (GAK-specific).

GAK computation cost

· A measure of how long (useconds) it takes a GAK algorithm to create (and distribute) a new channel map.

· A stop-watch calculation of the algorithm execution time. Collection and distribution times in a cluster are below the resolution of the cluster model, and thus are not measured.

· Used in cost / benefit analysis of a GAK (when multiplied by GAK_frequency).  

GAK frequency

· Number of times a new map is produced.

· Snooper in the DD-GAK layer.

· Used to analyze stability of maps.

Hardware Metrics

Hardware metrics are minimal in GAK experiments: fabric characteristics have been established in prior work and other programs.  Bandwidth usage by a given experiment in the cluster simulation  is measured and simply compared against actual bandwidth possible.  Latency is a factor of CPU cycles expended in servicing the fabric (on both transmission and reception) and time in the fabric.  Fabric time in a cluster is minimal (speed of light across small distances) and thus is factored out of latency measurements within the cluster simulation.  Latency then is reduced to a fabric_access cost, and provided as a constant to the simulation for a given experiment.  Similarly, the number of available channels in a fabric is provided as a constant for a given experiment.

GAK Algorithms Under Test

GAK algorithms are roughly divided into two classes, fixed and feedback. Fixed GAKs provide a mapping of tags to channels that can be pre-calculated and are based on data that exists before the simulation is executed. A number of mappings may be used during runtime by fixed GAKs to optimize channel loadings on a phase-by-phase basis.  Feedback GAK algorithms track the changing status of host publication and subscription information over the course of the simulation’s execution and produce new tag to channel mappings aimed at reducing the current false hit count within the system. Other runtime data may also be used by a feedback GAK, including the current false hit count per host and per channel. Feedback GAKs require some form of fixed GAK mapping to begin from, then optimize based on current conditions.

 Fixed GAKs are expected to be extremely low cost to use, but will not make the best possible use of channel resources as their a priori mapping decisions can only be estimates.  Also note that traffic data (or estimates of traffic data) may not be available a priori.  This class of GAK algorithm examines the value of low GAK overhead against limited efficiency in channel utilization. Feedback GAKs are expected to incur runtime costs in tracking DDM information and distributing new maps, but be very efficient in channel utilization. The tradeoff between fixed and feedback GAKs is effectively captured by the high-level GAK MOE ‘wire access count’, which sums GAK overhead and false hits.

The performance of GAK algorithms is measured against reference GAK implementations.  The oracular and broadcast GAKs are used as benchmarks and are described below.  The broadcast GAK shows the worst-case performance.  The oracular GAK shows the best possible performance with unconstrained resources and perfect knowledge. The other, more sophisticated GAK algorithms will be compared against the benchmark GAKs.

Fixed GAK Algorithms

Fixed GAK algorithms may operate either with only one phase, or with multiple phases and a new mapping per phase.  The mappings are determined solely based analysis of data prior to simulation execution.  Key input data for a fixed GAK is: number of tags, and traffic per tag.  Traffic per tag may either be an estimate (ala STOW), or measured from a previous or similar execution. 

Broadcast GAK

This GAK uses one channel to which all hosts subscribe and publish.  This should reflect the worst possible GAK algorithm, in that it will have the maximum number of false-hits with a resulting waste of bandwidth and receive computation. However, it will have very low GAK computation, and will have no dynamic channel subscription changes.  For systems with poor intrinsic scalability, a broadcast scheme may well be the best option, as dynamic algorithms are likely to thrash while looking for an optimal solution which does not exist.

Oracular GAK

This GAK algorithm performs a very simple tag to channel mapping. Each tag receives its own channel. This violates the resource restrictions in the cluster, but provides an upper bound on performance. One issue to be addressed is that there will be a high number of channel subscription changes, that would otherwise be reduced with tag bundling. We will ignore the cost of subscriptions when analyzing the Oracular GAK in an attempt to create a true upper bound on performance. 

Round Robin

The Round Robin GAK places N/M tags in each of M channels, where N is the number of tags. No consideration is given to reducing false hits, or in any other way balancing the system resources. There will be no GAK algorithm cost for calculating a new mapping, nor for distributing and instituting the new mapping, since it will not change. This is a trivial GAK that should provide a performance measure between that of the Broadcast GAK and more sophisticated ones. It examines the ‘law of large numbers’ principle, where random allocation will often perform adequately if a large enough number of tags exist and the traffic per tag is also randomly distributed.

Greedy GAK

This GAK allocates the highest communication volume K-1 tags each to one channel and puts the remaining N-K+1 in the remaining channel (where there are K channels and N tags). This removes all false positives from the K-1 highest volume tags. Any other mapping would add one of these high volume tags to a lower volume tag. Any consumers that only wanted the lower volume tag would receive false hits. It is not clear at what point the “overflow” channel will produce sufficient false hits to justify adopting another mapping, or if this is an optimal mapping. 

Consumer/Producer Groups

There are two associated GAKs that group tags according to who is consuming or producing on those tags. One may map into a single channel tags that are consumed as a group by a host or more than one host. By definition, this will reduce false hits. Another way to consider this algorithm is that it minimizes the number of channels that each hosts is subscribed to consume on.

Similarly, the set of tags that are produced on by one host may be grouped together. If other hosts produce to the same set, they may also use that channel. This minimizes the number of channels subscribed for production. The benefit of this approach is that it maps nicely to ATM networks.

In order to calculate the tags that are related, one may use graph theory, making each tag a node and creating an arc between all tags that are produced (or consumed) by the same host. The label on the arc may be incremented for each host that shares the same property. The graph may then be partitioned into N pieces where N is the number of available channels. The partitioning should occur in a way that minimizes the cost of cutting arcs. In other words it minimizes the number of times two tags are put into different channels when they are produced (or consumed) by the same host. One simple way to do this is to simultaneously decrement all labels, then count the number of sub-graphs that result, repeating until just before there are too many to fit in the available channels. This appears to be an O(H*N) algorithm where H is the number of hosts and N is the number of tags. Other graph “clustering” algorithms may also be applied.

Feedback-Oriented GAK Algorithms

False Hits

The obvious GAK algorithm based on feedback from current DDM data is to inspect the false hit rate per channel and adjust the mapping of tags in a channel when the false hit rate gets too high. The challenges are knowing what “too high” means, and knowing how to adjust the tag to channel mapping. A simplistic approach would be at each fixed period of time, inspect the channel with the highest hit rate, remove a fixed fraction (e.g. half) of the tags from that channel at random and place them in the channel with the lowest false hit rate. The unknown with this algorithm is whether it will converge to an acceptable level of false-hits, and whether there will be too much maintenance costs to justify that convergence. A more intelligent movement of tags may be possible, since subscription information is available to the GAK algorithm. It may be able to inspect a small number of other channels and predict the new false hit rates if the tag were moved there, and choose the lowest resultant rate channel.  This approach will be attempted.  An initial mapping will be created via a static GAK.  Round robin will be the primary starting point, as it may be done with no knowledge of traffic per tag values. If static GAK testing reveals a substantial improvement from the Greedy GAK over the Round Robin GAK, a limited set of Greedy GAK with dynamic balancing tests will be run.

Channel Load

A variant on the above GAK uses traffic volume per channel as the feedback mechanism in re-allocating tags to channels.  This GAK explores the possibility that false hit ratios will be too unstable to use as a balancing rule.  Instead, traffic per channel levels will be leveled, allowing the network filtering of as much data as possible.  From level traffic, a low false hit count may be expected.  Standard Bin Packing algorithms will be used to level load across channels.

Greedy GAK with Feedback

Updating the greedy mapping is trivial, meaning it can be done with very low latency on very current instrumentation. It is a matter of measuring the communication rate per tag, sorting and assigning the tags.   This GAK may be susceptible to ‘thrashing’ where too many re-allocations are done.

Minimum Subscription Change Rate

This GAK algorithm keys off the rate of subscription in each tag, and groups tags that have similar rates of change. This will minimize the effect on hosts that are not changing subscriptions frequently by not grouping high change rate tags to them. This algorithm ignores communication rate in favor of subscription rate, and should do well on data sets that have lower volumes of data, but have a high rate of change of tag subscription, on the assumption that a great deal of computation is involved in changing a subscription.

Dynamic Consumer/Producer Groups

Given that in any of the consumer/producer GAKs a channel represent a set of hosts, it may be postulated that any given channel will be under-utilized.  This condition would occur if any differences exist in host subscription / publication patterns, or in traffic flow rates per host – both of which are likely to exist.  More efficient use of channels may be achieved by bundling low-use channels onto a single channel, then using the freed channels to divide the load of a heavily-used channel.  Specific options to be explored are: producer (or source-based) grouping, where producers with a high traffic output level on their channel will be split into multiple channels for that producer and low-traffic producers will be merged into a single channel; consumer (or destination-based) groupings, where overloaded consumer channels are split and under-utilized consumer channels are merged.  Note that consumer grouping instances that have sufficient channels for a full N-way mapping will not benefit from dynamic mappings, as false hits are – by definition – zero.  However, the limited number of available channels will be quickly exhausted by large numbers of hosts, thus this GAK optimization should be investigated.
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Figure � SEQ Figure \* ARABIC �2�: Over-subscription increases false hit count











� Latency within many clustering solutions is on the order of 25 microseconds.  Latency values fluctuate wildly within the current WAN environment, dependent on cross-traffic, equipment and distance.  In the STOW secure, dedicated network with state of the art networking equipment, an average latency on the order of 60,000 microseconds was observed [Gajkowski].  Latency spikes approaching 100,000 microseconds were also recorded.  Lower WAN latencies on the order of 30,000 microseconds have been recorded across the Internet in ASTT testing, but with extremely high variances and no security.


� Drawn from the networking community, and in particular, ATM switching analysis.


� Acceptable levels of latency vary across use cases.  Under the DIS standard, 250,000 microseconds is the maximum permissible inter-model latency, and 100,000 microseconds for human in the loop latency. A value of 1,000 microseconds for acceptable latency will be used in ASTT cluster experiments.


� This system metric is thus consistent with the JSIMS requirements document, which states “Scalability is the ability of a distributed simulation to maintain time and spatial consistency as the number of entities and accompanying interactions increase”. 


� Note that inter-host traffic flow will vary in density and direction as a simulation progresses.  As a GAK is attempting to dynamically optimize resource use to current traffic flow, most data must be analyzed on a performance-per-time-slice basis. This is often referred to as ‘bucket’ (or histogram) data collection and analysis, where a bucket size (time or volume) is established for an experiment, and metrics are archived and reset at the end of each bucket.  All ASTT buckets are time-based and constant for a given experiment.
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