Orcus Architecture and High-Level Design

The Orcus Runtime Architecture

The Orcus system describes a new approach to the distribution and hosting of network-based games. Combining scalable software with streaming content distribution and runtime management, Orcus jumpstarts your entry into the emerging market for massively-multiplayer persistent virtual worlds.

1 Introduction

Targeted at the escalating broadband market, a scalable integration of real-time network play and streaming 3D media forms the basis of a system capable of hundreds of thousands of players interacting seamlessly across a fully shared virtual environment. A unique combination of 3D visibility computation algorithms allows the game designer unprecedented freedom in creating a visually rich environment, while context-sensitive streams skip retail-based distribution channels to provide incremental delivery of new content. ASP functions – from game distribution and billing to server hosting and fault tolerance – provide cost-effective system management to our client developers.

This document outlines the major runtime components of the Orcus system architecture, their functional responsibilities and their inter-relationships. Key design issues associated with distributed gaming are summarized and discussed in terms of the architecture and its ability to meet the following system requirements.

End to End Support: The Orcus system is designed to support the construction of a new game, from the beginning of code design through to performance tuning and beyond to the runtime distribution and support of a persistent virtual world. The runtime components required to support hundreds of thousands of users must be scalable and cost effective. Application and infrastructure roles are strongly separated to enhance scalability of the software itself and allow parallel development and optimization of components. The extensible framework approach to supporting these goals allows for customization or replacement of any functional component within the reference application or the infrastructure: the entire system is fully under control of the game developer while simultaneously providing a rich set of tools to accelerate development.

Security: Cheating and hacking in online games impacts the architecture significantly: preserving user confidence in the fairness of play is key to continued popularity and thus profitability. Strong functional isolation is used to minimize hacker opportunity, with critical functions executed on the server-side. Clients are isolated from the Servers (and other Clients) for further protection. Recognizing that sheer hacker effort will uncover weaknesses or exploitable gameisms, a final line of protection is provided by real-time game management. Data probes at both network and application levels are used to quickly detect and correct aberrant behavior, regardless of source.

Scalability: Orcus provides scalable infrastructure for supporting both highly dynamic player data and changes to the underlying 3D virtual environment itself. The Orcus communication model is based on a client / server variant, interposing an I/O Service layer for scale and security. Network traffic is controlled by perception-based routing, where the limited viewing capacity of a user’s display is exploited in determining what subset of data is required at any given client.

Scalability of the virtual world is addressed through our implementation of four critical functions: distribution and display of 3D virtual world data; distribution of real-time player state; parallel execution of game logic; and the software management of objects controlling and defining the virtual world itself.

· Virtual world distribution and display: Massive amounts of complex data are required to provide a rich 3D virtual world. Perception-driven streaming servers are used to provide users with only the content required for their current location and actions within the virtual world. Content for a particular section of the virtual environment is streamed to the user with approximate data first, followed by increasingly detailed descriptions. This LOD-ordering permits a high degree of mobility within the virtual environment with minimal performance penalties. Client-side caching and pre-fetching of virtual environment data is used to enhance real-time performance, while a server-side spatial database provides persistence and the backing store. Unique occlusion culling, variable resolution viewing and image warping extensions further enhance the creation of rich virtual world content by eliminating unnecessary data from the rendering pipeline.

· Real-time state distribution: the distribution of rapidly changing state data describing entities acting within the virtual world is also context sensitive, i.e., limited to only such data as is required for the current location or action. Application-specific categories of interest are created to describe and organize data, using the Orcus-maintained perception sets as the base categories. This meta-data is then used by game logic modules in a subscription process to acquire required data. Actual transport is done via a scalable, application-neutral network engine.

· Parallel execution: A combination of scalable cluster computing and multiple hosting centers minimize hosting costs for a massively-multiplayer game while also contributing to fault tolerance requirements. Inter-server protocols and dynamic load balancing allow the efficient application of multiple CPUs and/or clusters to any given game or infrastructure function.

· Software management: As the virtual world grows in size and complexity, so does the supporting software. Further, constant changes to content and infrastructure are required as a persistent game grows over time and Internet capabilities expand. An automated connection process between software components via subscription-based programming model and strong functional isolation in the object-oriented framework greatly aid in improving software scalability and reducing execution overhead.

The Orcus System Architecture

[image: image1.wmf]Dual CPU, Heavy RAM,

Heavy Disk

Dual CPU, Light RAM

Dual CPU, Heavy RAM

Dual CPU, Heavy RAM

Dual CPU, Heavy RAM

Spatial Database

Streaming Server

Shared

Game Logic

I/O Server

CCS

Shared

Game Logic

Shared

Game Logic

Dual CPU, Light RAM

I/O Server

Dual CPU, Light RAM

I/O Server

CCS

Multicast-enabled Virtual Private Network

Dual CPU, Heavy RAM,

Heavy Disk

Spatial Database

Streaming Server

Heavy GPU

End User

Heavy GPU

End User

Heavy GPU

End User

Heavy GPU

End User

Heavy GPU

End User

Data Centre

Game Centre

Preferred ISP

End Users

The core of the Orcus system focuses on scalable network distribution. Reference implementations of Game Logic and Graphical functions are provided to our clients for use as a code base or simply as a reference source. Two key plug-ins are used to interface Orcus core components with developer code: the Blackboard and the Perceptible Set. These are controlled and populated by the Orcus infrastructure, and directly used within developer code.

The Orcus Runtime Architecture

The Orcus Runtime Infrastructure provides the building blocks required to support large scale virtual environments over the Internet. Using the functional components and relationships established below, we discuss the implementation of our scalable infrastructure and its impact on the design of a distributed game. User management, hosting and billing components used at runtime are discussed in a separate document.
Figure 1: Functional Relationships within the Orcus Runtime Architecture

[image: image2.emf]Game Logic Graphics Engine

Network Engine

Billing

Runtime

Management

Blackboard Blackboard

Perceptible Set

Server Clusters

Spatial

Database

Real-time 3D Content Distribution Real-time State Distribution

Performance Toolkit

1.1 Client Side

· The Network Engine is responsible for linking a client into the central server(s) and to other clients. A point to point link with a selectable level of security is established to the I/O Service. Multiple, QoS-managed channels are interleaved across the primary link. Secondary links are maintained for rollover as mandated by current network conditions. Supported channels include reliable, reliable most-recent, and unreliable.

· Local Game Logic contains the functions allocated by the game developer to the client machines. An extensible framework is used to provide baseline functionality for common functions such as scheduling and as the interface mechanism to the Shared Blackboard. From the Local Game Engine’s viewpoint, the distributed nature of the game is completely hidden. Remote data is automatically obtained and updated via the Blackboard, and local information is transparently distributed to the required remote players via the Blackboard.

· A Shared Blackboard provides the communication mechanism between Game Logic components hosted across clients and servers. Application objects write their public state on their local copy of the Blackboard: the Blackboard is then responsible for ensuring all copies of that state on remote Blackboards are up to date. A set of transmission-reduction optimizations are used internal to the Blackboard to accommodate scalability. Interest management is used to determine which remote caches may require an updated copy of the object. For remote Blackboards that contain the updated object, a weakly consistent memory model is used to determine if the remote copy is still valid. Predictive contracts and variable resolution viewing are used in this evaluation. If, and only if, the remote cached copy is determined to be invalid, is an updated copy of an object transmitted, and only to the subset of Blackboards which currently require access to that object.

· The Local 3D Engine is responsible for all functions related to manipulating and displaying the 3D virtual world data. Using the Spatial Database as its backing store and Streaming Servers as a connection mechanism, the 3D Engine maintains the currently relevant 3D virtual world data at the local client in a two-level 3D Data Cache. Composed from memory and local disk, the 3D Data Cache is populated with potentially viewable objects. Pre-fetching of data is also supported to allow highly dynamic movement within the virtual world.

· The Perceptible Set Manager determines what objects are viewable from the perspective of the local user, using a Binary Space Partitioning Tree (BSP Tree) as an efficient organizational scheme for the 3D world. The Perceptible Set is used by the Local 3D Engine and Game Logic for occlusion culling, visibility set reduction, and collision detection. It is also used by the Shared Blackboard to determine what dynamic objects are required by local entities. Abstract representations of BSP tree nodes form the basis for data tags in the CCM caching scheme (supporting the categories defined by the application), the Streaming Server’s geometric routing, and in turn the management of the local 3D data cache.

1.2 Server Side

· A Server Cluster provides the physical location for a collection of specialized servers. Connected to the Internet from reliable, high-speed hosting centers, a Beowulf cluster provides an efficient computation base to the game designer. Multiple, geographically distributed Clusters may be used to support a single game for reasons of scale, resource cost or fault tolerance.

· Shared Game Logic is defined by each game developer, and represents the portions of the overall game that are executed outside the control or resources of the user base. Game logic is generally hosted on the Server for either efficient access to shared data, insufficient resources at the client, or critical game operations that are sensitive to hacking. Game logic may be dynamically assigned to Game Servers within a cluster, supporting fault tolerance and load balancing. Developers also have the option of hosting Logic across distributed Game Centers, or maintaining all Game Logic within a single Center.

· The I/O Service acts as an agent for Game Logic located within a Cluster. It is responsible for maintaining a connection to a user. Protocol and network specific functions such as packet bundling, compression, ACK/NAK management, re-transmission, and QoS management of the connection are performed by the I/O Server assigned to a given user. Various forms of security are also hosted here, most notably isolation of the Game Servers from attack, client IP hiding, and optional packet encryption. The I/O Service is also a major contributor to system scalability.

· The Spatial Database maintains a persistent view of the 3D data representing the virtual environment. New users joining a running game are delivered content from the Spatial DB, via the Streaming Service. Persistent data is spatially organized for efficient, context-sensitive acquisition.

· The Streaming Service provides a context-sensitive stream of 3D content to a client machine. Scalable delivery is accomplished via perception-based routing, where users are streamed only the data relevant to their current location in a virtual world. Initial distribution of a game is done via the Streaming Service, as are updates to code and content. Streams may be Level Of Detail ordered, where high-level, approximate data appears first in a stream, following by increasingly accurate data.

· The Cache Coherency Service (CCS) maintains the consistency of the shared Blackboard across all connected clients and servers. The Blackboard is viewed as an abstract collection of application-defined data objects, each with a single producer and a dynamically changing set of consumers. Note that from the perspective of the CCS, there is no distinction between client hosts and server hosts: both are simply nodes attached to the CCS. Scalable shared state is accomplished by means of interest management, where consumers subscribe to what categories of data are currently needed. Similarly, producers tag data items with the currently applicable category. The CCS then pushes new values of a data object to the subset of consumers that are currently registered for data of that category. Note the similarity to the perception-based routing done by the Streaming Service: tags used to manage the 3D content are also used as the base tags for dynamic game state shared by means of the Blackboard. Implementation overlaps obviously exist: Stream management will build off of the CCS internal functions for creation and cache management.

· The Runtime Operations Center is an extension to a Network Operations Center, controlling the game itself and the infrastructure which runs it. Game and network operators use ROC tools to monitor application-level traffic and CPU load conditions. Fault tolerance and load balancing control for communication and compute resources are hosted at the ROC. Game management tools for monitoring and editing game data on the fly are used in the real-time control of a game. Performance tuning is done via the ROC analysis tools. Of particular note is the ability to analyze an application’s use of the Blackboard. The overall producer/consumer set and data change rate gives a theoretical minimum on network traffic required to link the distributed application, independent of actual network traffic incurred. The developer may then examine for potential bottlenecks, where nodes in the system are requesting more data than the network can supply. This intrinsic scalability is critical: no network engine can efficiently distribute a non-scalable application. Such applications require modification to reduce the required amount of data flow: the ROC toolset pinpoints what portions of the application are the root of the problem.

2 The Orcus Shared Blackboard Programming Model

A specific programming model is provided by the Orcus infrastructure to reduce the impact of distributed computing on the application developer. Given the primary function of ORI is being a data distribution toolkit for virtual world game developers, the driving factor in the programming model is ease of use and scalability of the data distribution process. To encapsulate network-related functions, a Shared Blackboard construct is presented to the application writer for inter-host communication.
All entities represented in the virtual world are maintained as a separate data object, each with public and private state. Public state, as produced by a Game Logic module, is written on the Shared Blackboard component for transparent distribution to other Game Logic modules. Supporting multiple applications from a single implementation of the Blackboard is handled by use of interface inheritance and the up/down call structure used within a framework. Objects on the Blackboard are defined by a client application, inheriting interfaces for evaluation, marshalling and control from the Blackboard base classes. Application-specific knowledge may thus be used in the application-neutral Network Engine for transmission optimizations. A combination of subject / observer, smart proxy, contract, and context-sensitive subscription patterns are used to implement the Blackboard in a scalable fashion. Note that automated data detection and delivery is supported by such an implementation. Note also the latency masking effect provided by the dead reckoning capabilities of predictive contracts.

2.1 Accessing the Blackboard Via Subscription

Scaling large virtual worlds requires some ability to restrict the amount of data flowing through the network. A user may potentially access the entire virtual world, but at any one moment tends to require a very limited amount of data, generally that representing nearby mobile entities and the surrounding 3D environmental objects. If the consuming client can accurately describe what data is currently required to support the local user’s view (i.e. what data is of interest), the infrastructure is able to deliver said data ‘on demand’. The Orcus Blackboard uses a dynamic subscription model, where a consumer is automatically linked to all publishers of currently relevant data. This is accomplished via category-based subscription.

A Game Logic module receives data (i.e. populates its Blackboard) by subscribing to categories, not individual instances of data producers. A category is an application-defined description of data types and value ranges within that application’s set of Blackboard objects
. Modules may dynamically update their category subscriptions to reflect only what type of shared state is of current interest to each local Game Logic component. The Blackboard component may thus restrict the flow of network traffic to the minimum required for supporting each Game Logic node in the system. This process is referred to as interest management, and is central to increasing the scale of a virtual world. Interest management is:

· Application-specific: different classes of applications will have differing definitions of what is a useful segmentation scheme for the data to be shared across all hosts.

· Based heavily on current location and perception capabilities in entity-based virtual worlds. It is often extended from pure location-based to include specialized characteristics of the data. It is easily constructed from the location and visibility information maintained by the BSP trees within the Orcus infrastructure.

3 Physical Architecture: Cluster Runtime View

The physical runtime view maps server-side functional components (or their distributed sub-components) onto a network / CPU topology. Key associations between functional components are listed with their impact on implementation design. Three basic types of server platforms are established for supportability, and system functions allocated to each class of server. Two classes of hosting centers are established: a Data Center, using lower cost bulk bandwidth pipes, and a Game Center, connected to the net via the more expensive low latency pipes.

3.1 Key Implementation Notes

I/O service: Scalability of number of users arises from hosting the I/O Service on multiple, independent CPUs. I/O Servers are expected to have multiple network interfaces, and are not high-end machines in terms of memory, disk or CPU. Each I/O Server hosts N users. I/O Servers may be allocated users on a simple load-leveling scheme, or similar users may be grouped together on the same I/O Server
. Our first level of fault tolerance and dynamic load balancing is gained by allocating prime and secondary I/O Servers for a client to allow hot rollovers. I/O Servers may be co-located with Game Logic Servers, or may be geographically distributed. Hosting I/O Servers at geographically distributed sites and/or preferred-partner ISPs provides a set of bandwidth/latency and marketing optimizations. Under this scenario, I/O Servers are linked into Game Logic Servers via a multicast-enabled Virtual Private Network.

Cache Coherency Manager: the CCM will be hosted as a fully distributed object across all Servers, not on a dedicated machine. The CCM attached to an I/O Server will bundle shared state updates from the users attached to that I/O Server, forwarding that state to any Game Logic Servers which have registered for it via their local CCM object. Internal to the CCM, a variety of implementation options exist to determine routing destination(s) and transport options
. When attached to a game logic server, the CCM registers for required data, and transmits out shared state as updated by the local game logic. Load balancing and fault tolerance tools use the CCM in their reallocation of load from one server to another.

Game Logic: No perfect solution exists for splitting the game logic function across CPUs and hosting centers. Splitting along virtual geography results in users allocated to a server having connections with differing latency. Splitting based on real-world geography to roughly equalize user-server latency results in no locality of reference for the game logic servers, thus increasing inter-logic communication and user to user latency. Similarly, splitting along game logic functional lines will usually result in higher inter-server communication and synchronization concerns. While the architecture fully supports any required functional allocation, the approach with the most general application is to split the game logic across multiple servers within a cluster at a single hosting center. The splits will be done on virtual geographic boundaries, as defined by BSP tree nodes, to increase locality of reference for game logic and inter-user conflict resolution. Variations in network latency are more dependent on hop counts and router / server lags than geographical distance, thus this approach provides the most gain in performance and software development costs, with minimal impact on the system’s functional requirements. VPN links between I/O Servers and the Game Logic Servers further mitigates the latency issue by reducing hop count and eliminating Internet bottlenecks. Note that servicing users with physically distributed I/O Servers connected to central Game Servers split across virtual geographic boundaries extracts the most useful characteristics of both basic allocation schemes.

[image: image3.emf]global events

(local / remoe)

state

(read / write)

current

location / state

control

weakly consistent

cache updates

packed events

new 3D data

polygons, textures pre-fetch operations

compressed, prioritized data

visibility set

compressed, prioritized data

load balance,

edits

environmental changes

state updates

(read / write)

weakly consistent

cache updates

flow control

flow control,

load balance

load balance

flow control

LOD ordered data

Client Side

Local

Game Logic

Graphics

Engine

Perceptible Set

Manager

Shared

Blackboard

Event

Handler

Network

Engine

3D Data

Cache

Mulicast

VPN

Spatial

Database

Streaming

Server

Shared

Game Logic

Runtime

Operations

Centre

Cache

Coherency

Service

I/O

Service

Server Side

Figure 2: Physical layout of components to CPUs across Hosting Centers, Preferred ISPs, and Clients

� EMBED Visio.Drawing.5 ���

� Note the interface similarity to that of Topics and Channels in Java’s Publish/Subscribe model. A shared state model is used instead of channels because of the persistent nature of the entities and the network optimizations possible from a weakly consistent view of shared state.

� Where similarity is in terms of overlapping interest sets (i.e. state required and state produced).

� The CCM is in fact nothing more than a router, using the tags attached to shared state to determine destination(s).

p. 7 of 7

[image: image4.wmf]Dual CPU, Heavy RAM,

Heavy Disk

Dual CPU, Light RAM

Dual CPU, Heavy RAM

Dual CPU, Heavy RAM

Dual CPU, Heavy RAM

Spatial Database

Streaming Server

Shared

Game Logic

I/O Server

CCS

Shared

Game Logic

Shared

Game Logic

Dual CPU, Light RAM

I/O Server

Dual CPU, Light RAM

I/O Server

CCS

Multicast-enabled Virtual Private Network

Dual CPU, Heavy RAM,

Heavy Disk

Spatial Database

Streaming Server

Heavy GPU

End User

Heavy GPU

End User

Heavy GPU

End User

Heavy GPU

End User

Heavy GPU

End User

Data Centre

Game Centre

Preferred ISP

End Users

_1033943163.vsd
Spatial Database�

Heavy GPU�

Streaming Server�

End User�

Shared
Game Logic�

CCS�

Shared
Game Logic�

Shared
Game Logic�

I/O Server�

CCS�

Dual CPU, Light RAM�

I/O Server�

Dual CPU, Heavy RAM�

Dual CPU, Heavy RAM�

Dual CPU, Heavy RAM�

Multicast-enabled Virtual Private Network�

Dual CPU, Light RAM�

Dual CPU, Light RAM�

I/O Server�

Dual CPU, Heavy RAM, Heavy Disk�

Heavy GPU�

Dual CPU, Heavy RAM, Heavy Disk�

Spatial Database�

Streaming Server�

End User�

Heavy GPU�

End User�

Heavy GPU�

End User�

Heavy GPU�

End User�

Data Centre�

Game Centre�

Preferred ISP�

End Users�

