RTI 2.0 Architecture

	Stephen T. Bachinsky
Science Applications International Corporation

5400 Shawnee Road, Suite 110
Alexandria, VA 22312

703-333-5428

sbachinsky@std.saic.com
	Larry Mellon

Science Applications International Corporation

1100 North Glebe Road, Suite 1100

Arlington, VA 22203

703-907-2552

lmellon@std.saic.com

	Glenn H. Tarbox, PhD

Object Sciences Corporation

1835 North Powhatan St.

Arlington, VA 22205

703-538-4115

glenn.h.tarbox@objectsciences.com
	Richard Fujimoto, PhD

College Of Computing

Georgia Institute of Technology

Atlanta, GA 30332

fujimoto@cc.gatech.edu

Keywords:

High Level Architecture, Runtime Infrastructure, Time Management, Interest Management.

ABSTRACT: A recent DMSO (Defense Modeling and Simulation Office) initiative resulted in a new RTI design and build effort. This paper describes the design constructs used in the RTI 2.0 architecture and the driving principles used throughout the design process. Key architectural features are identified and analyzed in terms of meeting the RTI's set of requirements. Concepts such as system scalability, runtime performance, federation-specific tuning, reliability, and maintainability are discussed within the confines of the RTI 2.0 architecture. This paper presents information representing the HLA development process underway by the DMSO and the DoD AMG (Architecture Management Group).

1
Introduction

In order to create a common reusable infrastructure for distributed simulation the Architecture Management Group (AMG) has led the development of a standardized High Level Architecture (HLA) [1]. The AMG is composed of government representatives from Modeling and Simulation programs across the Department of Defense (DoD) Services. The AMG continues to provide support and guidance through the maturation process of the HLA.

The HLA is a blueprint to be used to develop the necessary infrastructure in order to promote interoperability and reusability within the modeling and simulation community. A key component of the HLA is the Interface Specification that defines the standard services that simulations utilize for coordination and collaboration during an exercise. There are two sides to the Interface Specification; the services implemented by the individual simulations themselves and the services implemented by the common Runtime Infrastructure (RTI).

While the HLA is an architecture, and is not software based, its core instrument in supporting the runtime services is the RTI software. As the RTI is an interface specification, it is envisioned that multiple implementations, potentially providing domain specific benefits, will be developed in the future.

The RTI provides services that fall into six categories: (1) Federation Management, (2) Declaration Management, (3) Object Management, (4) Ownership Management, (5) Time Management, and (6) Data Distribution Management. The specification of these services has evolved through prototyping and working group activities.

Implementation of a prototype RTI began in late 1995 and was used to support several HLA experiments that involved existing programs within different simulation domains: joint training, platform, analysis, and engineering. The initial RTI was used to gain experience with the early versions of the Interface Specification.

In August of 1996 a baseline Interface Specification (labeled 1.0) was accepted by the AMG and subsequently the HLA was approved by the Under Secretary of Defense for Acquisition and Technology (USD(A&T)) as the standard technical architecture for all DoD simulations. Working from the baseline Interface Specification a familiarization version of the RTI was produced and has evolved with incremental changes to the specification.

After the baseline Interface Specification was approved a competitive industry design activity was initiated. Initial RTI development occurred within Federally Funded Research and Development Centers (specifically MITRE and Lincoln Laboratory), and provided an opportunity for industry to build upon the lessons learned. The follow-on RTI 2.0 program was divided into two phases; Phase I was a competitive design activity, and Phase II is the follow-on development.

The goal of this competitive team’s Phase I effort was to develop the system architecture and software design, and perform analysis of the RTI 2.0 modules, interfaces, and internal data constructs with sufficient detail and understanding so that a commercial quality RTI 2.0 could be developed. The intention was for the design to provide a general purpose RTI that sufficiently meets the needs of all users. A secondary goal of the effort was to institute a design process to facilitate rigorous software development so that the ultimate software is robust, highly maintainable and can be developed for a reasonable cost. This paper presents the results of this team’s Phase I activities and discusses the approach used in the design process.

2
RTI 2.0 Design Process

Driving the RTI 2.0 (hereafter referred to as the RTI) design were a number of critical requirements. Specifically, as the RTI is intended to support a broad range of simulation communities, several federation types including test and evaluation (“hard” realtime), training and mission rehearsal (“soft” or perceptible realtime) and analysis (strictly causal, as fast as possible simulation) were considered. Within these communities, the RTI must accommodate varying host hardware and programming languages and allow for variegated levels of accuracy, scale (number of objects and platforms), levels of resolution, com​munications latency, throughput, and synchronization. Therefore, the design must be flexible so that configuration of the RTI may occur within a federation to tune the RTI’s internal behavior for higher performance by exploiting federation-specific characteristics.

 The design process considered technical issues (performance, extensibility, scalability, etc.), as well as implementation issues. Substantial consideration was given to facilitate porting the RTI software to a number of different platforms and operating systems.

Our design approach used object-oriented analysis (OOA) to first examine the domain requirements, identify fundamental objects and relationships (i.e., perform a functional decomposition) and to identify implementation issues associated with the HLA Interface Specification. This analysis led to a number of specific investigations to gain insight into key architectural and technical elements which impact quality and performance and affect flexibility of implementation. In particular, in-depth analysis was conducted in the areas of time management, data distribution management, LAN/WAN communications, execution process model, and memory management. The results of these analyses were incorporated in the design.

To guide our analysis and to provide essential insight and understanding, we performed a number of Use Cases, i.e., particular scenarios or uses of the system to identify critical system requirements and functional objects which significantly impact the design. As part of this analysis, we generated sequence diagrams that graphically depict the objects and required actions in performing a particular use case scenario. The use cases primarily followed the service operations defined in the Interface Specification and provided a good understanding of the functional details required in performing the services.

The results of these analysis activities were then used to drive an OO design (OOD) process in which the objects and internal interfaces were refined. Initially, the key classes were fully specified after which secondary or supporting classes were defined.

During the design phase implementation issues including portability and testing of the system were considered. The analysis and design process was supported through the application of the Rational Rose and Rational SoDA CASE tools [2].

The design process ensured that our architecture captured all the functionality of the existing RTI versions. Thus we started with the existing capability as a baseline. In addition, our design was influenced by a number of other factors associated with the RTI system. These items impacted the general philosophy of the RTI design, and are discussed in the following paragraphs.

2.1
Performance

Performance of the distributed communications infrastructure was the principle concern in the RTI design. Within the RTI component, the object-oriented decomposition was undertaken with performance as the primary consideration. Minimization of data copies, indexed tables to improve data lookups, and efficient use of buffered communications to minimize operating system calls are examples of this performance focus.

2.1.1
Scalability

Scalability to support large exercises is facilitated through the use of multicast communications and minimization or distribution of centralized services. Common techniques to increase scalability, such as hierarchies and reduction networks, are also standardized within the architecture for use by components that require access to system-wide information.

2.1.2
Extensibility

Proper OO design, exploiting interface definition and functional encapsulation, simplifies new technology and algorithms being inserted into the RTI implementation. Minimal disruption of other RTI components is thus accomplished. The design of the RTI recognizes that the architecture must embrace change and be prepared to adapt to changing requirements and technologies.

2.1.3
Community Review

To ensure that the RTI design would meet the needs of the user community, peer reviews were conducted. These reviews included representatives from various simulation domains who were invited to provide input to our design and present informal performance requirements on the RTI from their domain.

2.1.4
Design for Test

Well defined object interfaces substantially improves system testability. Components can be developed and tested for correct functionality in isolation or in concert with the overall system. Component debugging can be performed in a single process (to provide determinism during development) and distributed once correct functionality has been established. Grouping of objects into larger modules facilitates hierarchical testing, as well as a continual development/integration test cycle as the system is constructed.

2.1.5
Existing System Review

To lower cost and reduce risks during development, a detailed analysis was performed on existing systems. Lessons learned from efforts such as JPSD [3], RTI prototyping, Sim++, and ACE [4] were incorporated into our design. A number of algorithms, approaches, and testing strategies within our design are based directly on successful implementations from these systems.

2.2

Critical Architectural Elements

During the analysis and design activities a number of potential performance bottlenecks were examined in detail: primary data flow, data addressing and routing, time management, threading models, and reliable data transmission. Literature surveys and detailed analysis of similar systems were conducted, and a variety of approaches were considered for their impact on performance. The RTI architecture was segmented with interfaces which allow replacement of algorithms within each functional area with minimal to no effect on other RTI modules. Detailed descriptions of some of our analysis and design choices for these functional areas are outlined below.

2.2.1
Minimal computation

A number of condition checking operations within the RTI must be performed to ensure functional correctness. These runtime operations, however, can contribute significantly to the overall cost of transmitting and receiving data. Based on analysis of existing RTI prototypes and a walkthrough of our initial design, the error-checking cost was considered significant enough to merit specific optimizations.

The state pattern, an OO design pattern [5], was chosen to optimize system performance. This pattern inserts objects at key points based on the current state of the application. The state is determined from the federate’s publication, subscription, and ownership status of object attributes and interactions. The behavior of these objects changes when the system state itself changes (e.g., unpublishing of attributes in an object class or transfer of an attribute’s ownership). Thus, the behavior of operations is to “do the right thing at the right time,” and no error checks are done if not required. If the system changes state, the list of operations is modified to reflect the proper behavior for the new state. A significant reduction in average computational cost per data transmit/reception operation is thus achieved.

2.2.2
Data Addressing and Routing

The data distribution components of the RTI are critical to performance. It is well accepted in the distributed simulation community that broadcast-based data distribution algorithms do not provide sufficient scalability to support a large number of simulation objects before swamping the system and severely limiting runtime performance. Considerable effort was devoted to examining the state of the art in data distribution schemes to replace broadcast techniques with tighter mappings of data producers to data consumers. Systems such as the JPSD Run Time Component (RTC) and NRL’s RITN have shown that producer/consumer routing protocols scale significantly better than protocols such as the broadcast-based DIS protocol.

A broad range of options exist for both the producer/consumer mapping algorithms and the subsequent routing problem
. A data-based algorithm which routes data across IP multicast groups based on the current value of the data was chosen
.While this algorithm is not considered optimal, it has been shown to effectively reduce routing of data to uninterested hosts by and is considered low-risk and low-cost. Future RTI’s may be enhanced to use data distribution techniques, such as dynamic gridding, or source-based routing, by replacing the data addressing and routing schemes which are contained within the Global Addressing Knowledge (GAK) component of the system. Thus, as the simulation research community experiments with and successfully demonstrates new data distribution schemes, they will be incorporated into the RTI without disrupting other RTI modules, or affecting internal or external RTI APIs.

2.2.3
Input / Output

Early implementations of the RTI will likely exploit standard I/O interfaces such as streams and sockets. As such, the mapping between RTI code and the OS infrastructure is straightforward and limited to a small number of low level implementation sections. Differences between UNIX and Windows NT will cause little difficulty and there are many examples of portable code describing how to abstract both I/O interfaces.

Less clear is when performance demands dictate exploiting specialized platform features. Use of Asynchronous Completion Ports on NT or Asynchronous I/O on SUN Solaris will be, essentially, non-portable. The implementation of specialized device drivers to minimize memory copies between the federate and OS will be even less portable.

Communications infrastructure is also an important consideration when optimizing performance. While IP will be the most popular protocol, other network infrastructures offer higher performance but with significant differences in characteristics. ATM, for example, is a connection-oriented protocol that can solve many of the scalability problems inherent to distributed simulations but introduces its own difficulties, particularly when broadcast style communications are desired. Higher performance memory mapping technologies, such as SCRAMNET and SMPP offer significant performance possibilities but will change the underlying communications mechanisms of the RTI.

With these issues in mind, the RTI has been designed to minimize the number of “hook” points to the underlying OS communications infrastructure. While the actual system calls may not be highly portable, supporting the platforms anticipated for RTI ports will be straightforward. Additionally, the RTI development activity is examining the use of Washington Universities’ Adaptive Communication Environment (ACE) to potentially reuse the design patterns and mechanisms that have been ported to a number of different platforms.

2.2.4
Threading Model

In a complex event driven system, threading can minimize programming complexity by assigning each “task” to an individual thread. Threads can minimize or completely eliminate event loops that are often complex to implement. However, as a communications transaction subsystem with short duration transactions, programming of the RTI event loops has proven straightforward.

Therefore, the benefits to a multi-threaded RTI architecture are:

· Parallelism - Capability to take advantage of multiple processors, if available

· Preempting the federate thread - It is useful to allow the RTI to preempt the federate when required to minimize the likelihood of data loss and/or RTI starvation

· Federate Benefits - The federate could relax the requirements of how often the RTI is ticked. The federate could tick the RTI whenever convenient for the application instead of when the RTI requires processing cycles

· RTI Benefits - The RTI could implement tightly coupled communications algorithms without increasing the tick rate requirements on the federate.

There are penalties associated with the use of threads. First, there can be some debugging and data synchronization complexity introduced. More importantly, however, is the overhead associated with context switching and synchronization. This context switching time can be as low as 5us in the case of an application level thread context switch, and up to 300us when synchronizing two lightweight processes on a condition variable [7].

The RTI design allows for the runtime configuration of the underlying thread model used. Should the federate developer decide that the overhead associated with multiple threads of execution is unacceptable, it can be configured out. Most federate developers will likely configure the RTI to manage its own internal processing requirements with a separate thread even with some (hopefully small) decrease in efficiency. A thread-safe federate can configure the RTI to invoke asynchronous callbacks whenever there is a deliverable message thus avoiding the polling model entirely.

2.2.5
Time Management: TSO

Of the current Time Management service calls, the most complex and that with the greatest performance impact is Time-Stamp Ordering (TSO). Our goals were:

1) Produce a functionally correct set of components to implement TSO.

2) Provide sufficient performance for most TSO federations.

3) Provide expandability into the design. In particular, we anticipate faster, more efficient TSO algorithms to be implemented over the evolution of the RTI, as well as functional changes to the Time Management services.

The above goals were achieved by first conducting a literature survey of the Parallel, Discrete-Event Simulation community, which has a rich body of literature describing research in very similar applications. We chose a modified Chandy-Misra algorithm that was then proofed for correctness and reviewed by a number of Time Management domain experts. Changes to the original algorithm include a looser coupling to support the distributed nature of the system and increase performance, and added fault tolerance to cope with dropped federates and late-joiners. To ensure new algorithms could be inserted at a later date, the functions of LBTS calculation and time-stamping/data-ordering were segmented and encapsulated within the overall RTI architecture. Architectural support was then added to allow any Time Management algorithm the ability to inspect incoming and outgoing TSO data, and attach some form of ‘decoration’ (or ordering information) to the data. Architecture support was added to allow efficient, reliable communication between distributed Time Management modules, thus allowing computationally efficient reduction networks to be used in the LBTS calculation.

2.2.6
Distributed Objects

The configuration of a distributed RTI application can be extremely varied due to the diverse requirements of the different types of federations. The RTI itself, therefore, has been designed for maximum flexibility and includes the ability to distribute internal components arbitrarily among the available processes. These components are implemented as distributed objects that abstract the implementation location to the application.

Smaller federations may choose to have all RTI internal components co-resident with federate code to minimize the administrative issues of managing multiple processes. Larger federations will require the robustness and flexibility which process and machine level distribution provides. The invocation mechanism is abstracted behind a set of well-defined interfaces whose implementation is distributed at federation initialization.

As a further enhancement, some components have been designed to support redundancy. Global RTI configuration information, inefficient to distribute to all federates, is replicated to enhance fault tolerance. Examples of this type of data are global resource allocation (i.e., multicast group distribution) and federation configuration (i.e., publication, subscription, and connectivity topologies).

Distributed objects are implemented using the Proxy pattern. Access to object implementations are through local proxy objects whose function is to communicate with the implementation. If the object is remote, the proxy object marshals the parameters, operation name, and object ID to the remote process for invocation. If the object is local, the implementation object is simply a subclass of the proxy object but the caller code is identical. Runtime composability and remote communications are dramatically simplified.

2.2.7
Reliable Multicast

While multicast is an effective optimization for unreliable traffic, few results have been demonstrated for the applicability of reliable simulation traffic over multicast groups. Given the low volumes of reliable traffic initially predicted for the STOW exercise, a simple TCP exploder was implemented. However, large-scale federations are expected to generate a significant volume of reliable traffic, more than a TCP exploder can handle efficiently. In such cases, especially if there is relatively low volumes of unreliable traffic, the federation may wish to exploit multicast technology for reliable traffic.

A number of reliable multicast protocols exist in the research and commercial communities. Unfortunately, such protocols tend to be optimized for single-sender, multiple-receiver traffic patterns (e.g. video streams). Multiple-sender, multiple-receiver protocols exist, but exhibit high overhead and latency. Therefore, the initial implementation for reliable transport will use a TCP exploder but can be enhanced as appropriate algorithms become available.

2.2.8
System Composability

Each local RTI component must be instantiated and initialized within a process. Both configuration files and centralized initialization are supported.

Static startup information can be distributed from a central repository or with configuration-managed files. Examples of this data include RTI object and interaction schema, administrative object locations, static connectivity topologies, static resource allocations, etc.

Dynamic or complex configuration information requires centralized initialization. At exercise join, each federate instantiates a Local RTI Component (LRC) administrator and registers it with a federation executive distributed object implementation which then coordinates overall federation startup including management of DM/DDM and TM graph topologies.

Although the RTI will be developed with maximum “out of the box” functionality, it is not possible to provide for all of the federation’s requirements. It will be necessary for some federations to configure RTI subsystems to optimize component performance and behavior for their specific needs.

2.2.9
Liveness Detection

It is desirable to know when a federate has crashed or has otherwise become unresponsive. Broadcast heartbeats have been used effectively in the distributed simulation domain but introduce scaling problems. The RTI includes support for a liveness/wellness communications topology where heartbeats are sent to “neighbors” using reliable point-to-point links. A liveness manager object distributes liveness proxy objects as arcs to each server. The server transmits and receives periodic heartbeats with its neighbors and can detect when a neighbor is unwell.

3
Architecture

The RTI 2.0 effort produced a complete design including module definitions and internal interface specifications and is shown in Figure 3-1. The major components are summarized as follows.

A federate interfaces to the RTI via the Presentation Manager, which presents the language-specific API to the user. Internally the Presentation Manager converts the supported APIs into a common format before passing service requests and data to other RTI components. Supporting the Presentation Manager are a number of service components including the Time Manager, Queues and the Object Manager. The Time Manager maintains ordering information for the local federate and determines which data items within the Queues may be released to the federate without violating the federate’s data ordering requirements. The Time Calculator is a support module for the Time Manager, which is responsible for maintaining an up to date value for the system-wide Lower Bounds Time Stamp (LBTS), which is used by the Time Manager in determining data which can be released to the federate. The Object Manager is responsible for maintaining the current list of objects produced and consumed by the local federate. The Object Manager uses the Data Distribution component to efficiently transport data from producers to consumers. Internal to the Data Distribution component, the Global Addressing Knowledge component maintains the information needed to segment data flows such to minimize unwanted packet receipt. The Virtual Network component abstracts communications with the other RTI components and isolates the RTI from variations in networking technology. A generic Channel is used to provide both point to point and point to multipoint communications. Internal to the Virtual Network, a Reduction Network component provides support to RTI components that require efficient access to system-wide information. The Multi-level Distributor is an optional component which supports large-scale federations through hierarchical message transmission.
3.1
Presentation Management

The Presentation Manager module provides the runtime interface between the RTI application library and the federate application. It handles the specific programming language issues and will be implemented for each platform/language combination.

The Presentation Manager interface consists primarily of two abstract base classes, the RTIambassador and FederateAmbassador. The actual subclass instances used at run time are determined by the needs of the federate and federation.

The RTIambassador is the interface through which the federate invokes operations on the RTI. Its interface is largely derived from the Interface Specification,

although some supplemental operations to control callback behavior have been added. Subclasses of RTIambassador control the behavior (implementation) of the interface based on the threading model used. Federate developers may choose the most appropriate threading model for their application and platform from the following supported models.

1) Single thread shared between the federate and RTI: In this configuration, it is necessary for the federate to "give cycles" (or tick()) the RTI at a sufficient rate to ensure proper operation. The federate developer must ensure that the rate be sufficient to ensure that the I/O buffers don’t overflow and that the timers work with sufficient granularity. In this mode, the RTI provides no information to the federate to determine this minimum rate. This configuration will be used by federates on platforms that do not support threads, and by federates for which stringent CPU time constraints make preemptive threading undesirable (e.g. hard real-time federates.)

2) Multiple threads supporting a non-reentrant federate: In this mode, an internal RTI thread is spawned which monitors the input channels and timeouts (through the Scheduler) and performs required RTI processing as needed. When the federate is in a state to desire callbacks, it calls tick() and the federate thread is used to call back the application through overridden FederateAmbassador methods. This configuration relieves the application from the responsibility to tick() the RTI frequently and will be used by federates that wish the RTI to leverage the benefits of preemptive threading.

3) Multiple threads supporting a fully reentrant federate: In this configuration, the federate is asynchronously called back at when data is available for federate processing, removing the requirement to tick() the RTI. The federate programmer must take steps to synchronize its internal data structures to ensure proper multi-threaded operation. This configuration is desirable for federates that wish to make full advantage of the preemptive threading supported by the operating system, and that are prepared to receive callback notifications at any time.

3.2
Administration

The Administration module contains sub-systems that are responsible for supporting distributed federation executions. There are a number of RTI capabilities that rely on the ability to maintain "global" information for a federation. In addition, distributed RTI components must often communicate amongst themselves to coordinate activity. The administration module constitutes the mechanisms that facilitate such communications.

The Administration module includes provisions for Federation Management services as defined by the HLA Interface Specification (e.g., Create Federation, Resign Federation, Request Pause). Additionally, this module largely manages Ownership Management services.

Distributed communications is supported through the use of Proxy objects that abstract communications from the programmer. A local proxy object provides a "facade" to the application with operations that are implemented through transparent communication with a remote implementation. An important characteristic of these proxy objects is their ability to be marshaled as parameters and return types, greatly simplifying the creation of communication clusters.

3.3
Virtual Network

The virtual network layer provides a standard interface for communication. The network is typically implemented using standard Ethernet devices and protocols but alternatives such as shared memory architectures could be supported within the virtual network. Each channel in the virtual network represents a physical communication stream (e.g., TCP link, multicast address) and enables a heterogeneous communication environment where channels can implement various mechanisms or protocols.

Channels can be either inbound or outbound and are created in response to attribute updates, interaction transmissions, publications, or subscriptions. Channels have a simple interface and encapsulate the complexity of low-level network services and platform variations.

All channels are managed by the Distributor object, for which there is only one instance in a local RTI component. The Distributor controls the flushing of OutboundChannels and the processing of received data by InboundChannels. This mechanism enables efficient use of I/O devices and allows for prioritization of channels processing. A local RTI component can be configured to use a specialized distributor (MultilevelDistributor) in order to support hierarchical routing of data within a federation execution.

3.4
Object Management

The Object Management module maintains information on federation objects and interactions and efficiently supports operations related to these elements. The two main components are the Federation Object Model (FOM) registry and the data transmission controllers.

The Interface Specification uses runtime typing to allow the RTI and the federation to identify federation execution data elements. These include object classes, object class attributes, interaction classes, interaction class parameters, and routing spaces. Therefore, the RTI requires initialization information to define the object and interaction class hierarchies and the attributes (for objects) or parameters (for interactions) that are members of the classes.

Message classes maintain the implementation details for the various types of RTI communications. For each service, the message object includes the parameters, return values, possible exceptions, and appropriate actions. The message objects flow through the system using information managed by DataTransmissionControllers (DTCs) which implement the appropriate behavior for the message in an efficient manner. There are DTCs that correspond to the objects, attributes, and interaction classes that the local RTI component must manage. Each DTC contains state information about publication, subscription, and ownership.

A DTCobject instance has a collection of DTCattributes that manage their state by an association with a flyweight AttributeState object. A flyweight object is shared by many objects and performs operations on objects passed as arguments. The flyweight design pattern requires only one instance for each state (subclass of AttributeState) rather than an instance for each object instance attribute. This design permits a single data flow path that can be reconfigured to perform the correct operations based on the state of each attribute and minimizes computational costs.

3.5
Distribution Management

The Distribution Management module is responsible for addressing outbound and inbound data for the local RTI component. Addressing refers to determining how the data should be transmitted to other distributed RTI components.

Data segmentation is most commonly achieved at the network level using IP multicast technology. Multicast groups are created to carry specific data, and only those distributed RTI components wishing to transmit or receive that type of data need to join that multicast group. There are limitations to the number of multicast groups that can be supported so a perfect segmentation is often not achievable.

The global addressing knowledge (GAK) object is responsible for implementing the algorithms for determining how data is to be transmitted associated on each multicast group. The GAK unifies the addressing procedures for all of the communication streams using the channel abstraction to represent the physical communication streams.

The Interface Specification mandates that data addressing can be based on the data type or a data value. Type based filtering is supported by the HLA Declaration Management (DM) services and allows distributed RTI components to specify interest in producing or consuming data corresponding to a particular attribute or interaction class. Value based filtering uses the HLA Data Distribution Management (DDM) services, which uses a routing space representation to match producers and consumers of data.

The GAK handles both class and value based filtering for the data producers and consumers. A distributed RTI component producing a certain type of data will use the Addressor object to determine the appropriate channel to be used to write the data. The Addressor determines the type of data, whether a routing space region is associated with the transmission, and the transport mode. This information is provided to the GAK that can then determine the channel used for that data transmission. In the value-based addressing (DDM) the routing space region may change whenever a new transmission occurs. This requires the Data Transmission Controller to re-address the data whenever the region changes.

On the subscription side, the Obtainer is provided the data type, the subscription routing space region (if one exists), and the transport type of the particular data which is of interest. The Obtainer invokes the GAK object is a similar fashion as the Addressor in order to determine the appropriate channel which will be used to receive the data. Whenever the subscription region changes the Obtainer must be notified to determine whether the data of interest is now being produced on a different channel.

3.6
Time Management

The Time Management (TM) module implements the time management services described in the HLA interface specification. The TM package performs three major tasks: control the advancement of a federate's time in coordination with other federates, correctly order all information released to the federate, and implement the HLA interface. This section presents an overview of the TM design and its interaction with other components in the distributed RTI component.

In addition to implementing all of HLA requirements, the TM package has been designed to handle anticipated modifications to the HLA specification. Some of the changes anticipated during the design have been included in subsequent Interface Specification updates (e.g. zero lookahead, that allows the federate to control the time constrained and time regulating state of the distributed RTI component). Other potential changes are user-defined fields for allowing federation-specified ordering of message delivery. The Time class interface isolates the changes to be made to support user defined message ordering. This class provides comparison operations that allow the sorting and manipulation to be done without needing to know the implementation.

In order to control the advancement of a federate's time, a distributed algorithm for calculating the value of LBTS has been developed. Both the basic algorithm and its implementation design are robust to lost or delayed messages and processor failures. The algorithm is scalable to large federations and has minimal impact on the design of the underlying communication infrastructure. The TM module interface will support different LBTS algorithms and provides architectural room for modifications to the proposed LBTS design. Care was taken to ensure that only federates sending or receiving TSO data will be affected by the runtime cost of the LBTS calculation.

The delivery of all callbacks to the federate is ordered by the TM package. This is accomplished by maintaining a TSO queue and a FIFO queue of message objects. Messages are enqueued by other modules. Each message represents a callback to the federate that is invoked when the message is dequeued.

4
Acknowledgements

The work described within this paper was produced via a four-month intensive design effort from several individuals. Architectural team leads were Steve Bachinsky, Larry Mellon, Richard Briggs and Glenn Tarbox. Richard Fujimoto provided the basic LBTS algorithm and contributed to the overall system design. David Itkin performed invaluable use-case analysis and the bulk of the Time Management and Queuing designs. Darrin West, Ed Powell, Doug Schmidt, Margaret Loper, and Karsten Shwan contributed domain expertise and analysis in many areas of the system design. The RTI 2.0 design work was funded under a STRICOM/DMSO RTI 2.0 Phase I award.

5
References

[1]
Defense Modeling and Simulation Office Web Site, http://hla.dmso.mil.

[2]
Rational Software, http://www.rational.com

[3]
Joint Precision Strike Demonstration, http://www.monmouth.army.mil/peoiew/jpsd/home.htm.

[4]
Adaptive Communications Environment, http:\\www.cs.wustl.edu\~schmidt.

[5]
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: “Design Patterns”, Addison-Wesley 1994.

[6]
Edward Powell: “The Use Of Multicast and Interest Management in DIS and HLA Applications” DIS Conference.

[7]
Bill Lewis, “Threads Primer : A Guide to Solaris Multithreaded Programming” Prentice Hall, 1995.

Author Biographies

STEPHEN T. BACHINSKY is a senior engineer with SAIC and has received his BS and MS degrees in electrical engineering from University of Lowell and Northeastern University, respectively. He has twelve years of experience in simulation engineering; featuring synthesis, design, development, and analysis using various software tools, techniques, and technologies. He has led software development teams in the area of distributed simulation and infrastructure development. Recent responsibilities include the technical lead for the HLA Platform Proto-Federation activity and lead software architect of several reconfigurable, distributed, object-oriented, simulation frameworks, including the STOW Simulation Support Framework. Current responsibilities include program manager of the RTI 2.0 activity.

LARRY MELLON received his B.Sc. from the University of Calgary. He has specialized in support infrastructure for parallel and distributed simulation since 1988. In 1993, Mr. Mellon was the lead developer for SAIC’s ADS Architecture Study (supplied to DARPA and DMSO as an early input to the HLA), and was part of the initial STOW architecture team. Mr. Mellon’s current work involves the analysis of scaling techniques for distributed simulations, including interest management, filtering, load balancing, and weakly-consistent memory models.

DR. GLENN TARBOX has worked for over 12 years in Object-Oriented, Component, and Distributed Object technologies (particularly CORBA). Glenn has served as technical deputy and lead architect on simulation, planning, and C4I programs within DoD. His background includes work in Manufacturing, Robotics, Machine Vision, and the financial industry. He is currently participating in a number of large commercial and Defense related projects. Dr. Tarbox has also served as technical lead on a variety of OODBMS-based projects and is actively involved in developing and presenting training courses in Distributed Object and Component Computing. Glenn received his Ph.D. from Rensselaer Polytechnic Institute.

DR. RICHARD FUJIMOTO is a professor in the College of Computing at the Georgia Institute of Technology. He received the Ph.D. and M.S. degrees from the University of California (Berkeley) in 1980 and 1983 (Computer Science and Electrical Engineering) and B.S. degrees from the University of Illinois (Urbana) in 1977 and 1978 (Computer Science and Computer Engineering). He has been an active researcher in the parallel and distributed simulation community since 1985 and has published over 70 technical papers in refereed journals and conference proceedings on parallel and distributed simulation. He lead the definition of the time management services for the DoD High Level Architecture (HLA) effort. Fujimoto is an area editor for ACM Transactions on Modeling and Computer Simulation. He has also been chair of the steering committee for the Workshop on Parallel and Distributed Simulation, (PADS) since 1990, served on the Interim Conference Committee for the Simulation Interoperability Workshop in 1996-97, and served as co-program chair for the first Distributed Simulation Symposium (DSS) in 1997.

� An overview of such options may be found in [6].

� A similar algorithm was successfully prototyped in the STOW RTI.

_945838904.doc

Federate

Data Distribution

Global Addressing Knowledge

Presentation Manager

Time Manager

Time Calculator

Physical Network

Multi-level Distributors

Queues

Object Manager

Reduction Network

Channels

Virtual Network

