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Abstract

Military systems utilize high-fidelity modeling to provide realistic behaviours and virtual worlds in training exercises.  Technologies to support thousands of distributed, interactive entities have been developed. Many of the problems encountered in simulation-based training are similar to those found in gaming.  This paper summarizes and analyzes techniques used in creating large-scale training exercises in terms of potential use within the gaming industry.  Specific attention is paid to approaches potentially useful in supporting large-scale, distributed interactive gaming.

1) Introduction

The U.S. government has invested billions of dollars in simulation-based training and continues to develop the area
.  Many of these training systems bear a remarkable resemblance to gaming: strategy, tactics, planning and real time combat are all practiced via simulated forces and synthetic immersive battlefields.  So, why do your tax dollars pay the military to build and play games?  Increased combat readiness at a lower cost is the answer.  The constant exercising of combat tactics under realistic conditions improves response time and allows exploring new tactics for a changing opposition in new situations.  Simulation and immersive trainers provide a reasonably realistic environment at a fraction of the cost of war games in the field. And of course strategy sessions and planning via abstract modeling go back to Alexander drawing options in the sand.

Many of the technical difficulties facing game developers today have been encountered in one form or another by the military training community.  As computational power, network connectivity and high-end graphics transition into the low-cost PC market, game developers have the ability to produce a richly textured shared virtual world affordable to a broad base of consumers.  Exploiting the potential of the Internet via approaches from distributed interactive training systems is a natural place to begin.

Few of the military training communities’ products for utilizing computational, graphical and network resources are likely to transition directly to the commercial gaming world. However, there is value in examining solutions to similar problems.  If nothing else, “a wise man learns from his mistakes, a wiser man learns from someone else’s”…

This paper is structured to first provide an understanding of what types of simulation exist in the Department of Defense (DoD), how they are used, and how their use differs from what might be expected in a commercial gaming system.  Hopefully this will aid in exposing implicit design constraints that are beyond the scope of this paper to fully address.  Second, we explore the evolution of distributed training simulations from a small set of standalone applications to a large-scale shared virtual world.  Physical limitations encountered along the way are highlighted, and initial approaches to surpassing these limitations are discussed.  Finally, we conclude with a summary of current technologies and their status in terms of applicability to the distributed interactive gaming problem.

2) Classes of Military Simulation

Distributed simulation is used for an incredibly broad range of purposes within the DoD.  A great deal of modeling is done to examine the behaviour of potential new military systems under various conditions before construction, and simulation is used to stress-test components during design and construction.  The level of detail (or fidelity) used in these models is well in excess of gaming requirements: little of value to the gaming community exists in these systems.  Other uses of simulation bear a much closer resemblance to gaming:

· Real time training: operators of military systems are stimulated with inputs similar to combat conditions and respond using simulated control systems. Tank drivers, jet pilots, helicopter jockeys, and fire control center specialists all hone their battle skills in immersive environments populated with both friendly and opposition forces.  Fast-twitch action dominates.

· Strategic analysis: commanders from platoon leaders to generals plan mock battles, analyzing strategic options and potential enemy responses using abstract models of logistics and combat.  Previous, classic battles are also replayed for commanders, both as they originally played out and to explore alternative responses.  War colleges pick apart the battles of Hannibal and Napoleon in much the same way as historical gaming circles, and commanders replay the tank tactics used in the 73 Easting battle
, observing with displays similar to those of today’s combat-oriented games. 

3) Training and Gaming: Similar and Different

Real time training and interactive gaming have similar characteristics.  The trainee/gamer must be stimulated with a realistic environment, actions taken by the trainee/gamer must take effect quickly in the environment, and there are realism advantages to having as many trainees/gamers interacting together as possible.  These similarities are addressed throughout this paper, however a number of differences exist as well. The primary differences revolve around acceptable cost per user and level of realism required within the virtual world. These factors drive training systems into different directions than a game developer may take.  Understanding the implicit requirements which motivated some design decisions will help in deciding what techniques are useful and which are too domain specific.

a) Differences

High-end workstations and dedicated Megabit backbones are common in the DoD training community: acceptable cost per user is quite high.  This is required to support the high level of realism currently used to simulate battlefield conditions.  For many training audiences, it is not enough to simply see that a missile shot from a helicopter hit a tank, they must know exactly how it hit.  Factors such as wind conditions, the (changing) radar cross-section of the tank as it moves, the accuracy of sensors, and probable enemy reaction (movement / counter-measures) to being shot at must all be accurately factored into the hit/miss question. Why the extra detail when a simple die-roll would answer the question?  Extensive after-action reviews are conducted to evaluate doctrine and tactics.  If the missile missed the tank, you need to know why.  Changes in doctrine (the ‘book’ of what to do under what conditions) may result.  Examples might include: “only use zero-deflection angle shots at Tiger tanks when the wind is above 20 mph”, or “Enemy doctrine suggests a sharp left turn and a jump in speed when under fire.  Fire a second missile on that heading.”

A second difference in focus is interoperability: different simulators are often required to connect together and produce meaningful interactions.  This is a somewhat odd requirement, driven by the need to train dissimilar forces together under combat conditions and is complicated by the number of differing simulations extant in the community. Considerable effort has been devoted in both simulation and protocol design to support this requirement. 

b) Crossover

The extra cost required to support high levels of accuracy will probably preclude much direct use of existing DoD software in the gaming world, but the methods used in solving the basic problems of realism and distributed connectivity are certainly transferable.  Some crossover has already occurred: www.rtimeinc.com describes a system based on the Distributed Interactive Simulation (DIS) protocol (an IEEE standard for linking training systems). ’Light’ versions of DIS for gaming systems may be found at http://www.mak.com/gaming/game_cover.html and www.metavr.com.  http://www.kaon.com provides a game not based on a specific DoD protocol, but uses many of the concepts behind distributed training systems and is claimed to produce an equivalent level of visual fidelity as the DoD de facto training standard: Modular Semi-Automated Forces (ModSAF).  

Crossover from the gaming world into DoD training is also occurring.  Beyond the obviously increased use of commercial 3D graphics hardware, the U.S. Marine Force has an effort underway to use Doom  models for platoon-level combat training (http://www.gamerx.com).  While the modeling is less accurate than normal training systems, the low cost allows an unprecedented number of training exercises to be conducted without impeding the normal training regime.  Indeed, the biggest problem seems to be: how do you make a Marine stop playing Doom?

A number of independent development efforts along similar lines also exist. http://unreal.epicgames.com/  describes a system that approaches distributed information management in ways similar to advanced distributed simulation training systems.  Further, [Aronson97, Gustavson97] analyze DirectPlay in the context of distributed simulation.

1) Background of Training Systems

Describing all areas of simulation-based training is beyond the scope of this paper.  Instead, we provide generalizations and examples of current, past and future training systems.  The technology developed at each step is highlighted, and sizes of systems achieved to date are given.

c) Immersive 

Immersive trainers are used extensively for real time rehearsals of tactics and familiarization with the fielded hardware.  Aircraft trainers in particular are surprising realistic.  From 360 degree vision to simulated G-forces, these trainers are as close to flying as you get without wings.  The drawback is cost. Millions of dollars for a single unit is beyond the scope of most home gamers: market penetration will be small for games incorporating this technology…  An interesting note though is that even with the high cost, system response time often falls behind the real world.  The extreme realism combined with the out-of-sync phenomena has been known to cause severe disorientation and nausea when pilots leave the trainer: another detriment to the home gaming market… 

d) Distributed Immersive

Once immersive trainers existed, it wasn’t long before someone thought of hooking them together.  Early systems used synthetic forces to stimulate the trainers with realistic targets that moved intelligently and shot back. The SimNet protocol was developed in the late 1980s to link trainers into a single, coordinated virtual world. SimNet proved exceptionally valuable in allowing the military to practice coordinated tactics: from groups of tanks assaulting the same position from different angles to chopper support of attacking ground forces.  A large effort was instigated to expand the use of joint force training with distributed simulation.  One drawback to expanded use was the locality of SimNet. The protocol was designed for use on high-speed LANs by a small set of immersive trainers.  Expansion into widely distributed execution of a broader spectrum of systems would require considerable work.

e) Distributed Interactive Simulation

IEEE 1278 (DIS) was defined as the standard to link training simulations across LAN and WAN backbones.   DIS systems initially used static terrain to avoid the cost of distributed updates, and a broadcast-based protocol to update the positions and actions of entities as they moved through the virtual world.  Entities in DIS were defined as platform-level objects operating independently within a shared battlespace.  Combat resolution is done by the targeted entity: a ‘fire’ event is broadcast and each entity decides if it is hit.  

DIS was quite successful in its debut: so much so that larger virtual worlds with greater numbers of entities were demanded by the training community.  Exercises with up to 300 entities were supported by effectively by DIS, but larger numbers of entities would bring the broadcast-based protocol to its knees.

Extensions to the DIS protocol and hierarchical hardware architectures were introduced to increase the size of exercises, culminating in the STOW  and JPSD  exercises in the late 1990s. Exercises with 3,000 to 30,000 entities (respectively) have been successfully conducted with these two systems
. 

f) Joint Training Confederation

Training at the theatre command level requires far more entities and their actions to be represented than is possible at the level of detail in DIS exercises.  Accordingly, simulations which aggregate platform-level entities in simplistic groups of forces were developed.  The Aggregate Level Simulation Protocol was defined to link such systems and extensively used in the Joint Training Confederation and similar groups.  Battlefields with 20,000 to 100,000 aggregated entities are common, with both commanders and trainers in the loop. Simulation time is not tied to wallclock time in ALSP.  Hours to days of simulation time pass in minutes to hours of wallclock time.  

g) Expansion of Distributed Simulation

Current research in distributed simulation focuses on increasing the scalability of the models and infrastructure: how can larger numbers of users and entities be supported with less hardware.  A second major effort is interoperability, where simulations created by differing sets of developers may be integrated at runtime for a common exercise.  The High Level Architecture (HLA) is now the DoD mandated mechanism for linking distributed systems.  www.dmso.mil provides information on the HLA and the associated Run Time Infrastructure (RTI) which links HLA federates (simulations) into an exercise with a common goal (federation). Training systems of increased size, fidelity and performance are under development using these and similar protocols.  

4) Limitations Encountered 

As systems were developed, a number of limitations in both the network hardware and the protocols used were encountered.  While successful when connecting small numbers of entities and users, scaling the system proved to be difficult.  The following paragraphs summarize the problems encountered, and the design choices that resulted. Many such choices simplified initial development but had to be modified as systems grew in size.

a) Connectivity

In establishing the first protocols for distributed simulation, a number of assumptions were made with regard to network connectivity and system size.  Bandwidth and CPU limitations precluded a fully dynamic virtual world, where changes in terrain or environment by one entity were reflected to all other entities. Network latencies for reliable traffic exceeded playability goals, so an unreliable protocol was chosen.  Finally, a number of different simulators (containing a broad range of simulated battlefield entities) had to be able to participate.  The Protocol Data Unit (PDU) was defined as the medium of communication.  It describes public simulation state, such as type of entity, position and movement vectors, and damage status.  All other simulation state data is assumed globally static (e.g. terrain features) or private (i.e. controlled and contained within a single simulator).  Latencies were high and variable, so systems were designed to accept a certain degree of jitter in data values and algorithms were designed to mask both jitter and latency. 

b) Continuous Broadcast

Each entity in a DIS simulation broadcasts its current state (contained in the PDU) to all other entities.  The simplicity of this protocol allows for very easy solutions to drop-in / drop-out of players, network connectivity failures, and also lowers the risk that packet loss will cause distributed public state to fall too far out of synchronization.  Beyond the connectivity issues, the ‘blind push’ paradigm used by DIS allows for simple integration of different simulations.  Entities push their state out without need of maintaining routing information or knowledge of destination entities.

The drawback of continuous broadcast protocols are obvious.  While they greatly simplify the design and development of small systems, they do not scale to large numbers of participants.

c) Fully Distributed

Another DIS design requirement was to support completely de-centralized execution. No single points of failure (e.g. ID servers) were permitted.  Exercises could thus continue regardless of dropped connections, crashed hosts or network delays. Fully distributed execution meshed well with the continuous broadcast protocol, but later systems found central servers (physical or conceptual) to greatly simplify the increasingly complex control and connectivity algorithms under development.

d) Time Management

Coordinating time across all hosts is difficult regardless of the style of time management employed.  Clock drift affects the resolution of entity interactions (“who shot first?”) in real time training.  Faster than real time modeling systems such as ALSP produce a different set of problems: all events at each host must be executed in time-stamp order.  A high volume of handshake traffic is required to support event ordering, escalating overhead costs into the nosebleed seats. Real time training systems resorted to simply allowing small time errors.  ALSP-based systems were designed to minimize communications between hosts to reduce time management costs, but full event ordering was maintained despite the cost, occasionally resulting in delays in time advancement. 

e) Conclusion: The Network Sucks 

Note that many of the above design decisions were made around the same basic problems: high (and variable) latency, frequently dropped packets, and unreliable connections.  But despite the problems and limitations of distributed communication, exciting and innovative interactive systems have been constructed.  Network vendors have made great strides in performance improvements and reliability over the past few years with no end in sight.  While building to what the network can do today is an obvious goal, designing to what it will be capable of is equally important.  A layer which presents a simple stable interface between the network engine and the game engine is critical to both success and sanity.  As technology improves, better network engines may be inserted into a game with little disruption.

Network artifacts beyond reliability and latency also had an impact on design, in particular, the CPU cost of processing network packets and multicast technology. Dependent on OS and hardware configuration, servicing network access requests can be quite expensive.  Copying of packets into user space, context switches into kernel mode for device access and the actual servicing of the network device all steal cycles away from the application.  The problem is intensified by broadcast-based protocols, where the incoming packet rate grows proportionally to the number of participants, ultimately exceeding the capacity of an individual host.  Multicast technology – sending a single packet to multiple destinations – has excellent potential in reducing the cost of large-scale distributed games.  It not only lowers the overhead costs of connecting multiple users, but also may be used as a low-cost first-order filter in distributing public simulation state. However, current network support for multicast is limited in numbers of available groups, delays in join / leave requests, and support at the OS level.  A final network concern is that secure transmission of data is required for many training simulations.  Efficient hardware to support security has been developed, but latency is still added. 

5) Technology: What’s Worth Stealing?

The following summarizes key portions of the technology used in distributed training simulations. State of the art approaches are given, as well as current research and future directions. Also included are occasional opinions on the applicability of the technologies (or the ideas behind them) to distributed gaming. Your mileage may vary…

a) Weakly Consistent Data Models

This perhaps is the greatest strength of the DIS protocol: the awareness that a full and accurate representation of (real time) shared state across distributed hosts is neither possible nor required for training purposes.  By eliminating the need for full synchronization, connectivity requirements fall to what is possible in current network systems.  It is justifiable in training because of the ‘fog of war’: effects happen at a fast and furious pace.  Under combat conditions, participants cannot detect exact ordering of events or verify the accuracy of positional data beyond a certain degree of precision.  Accordingly, DIS allows time errors of up to 250 milliseconds in distributed data, and an (adjustable) error tolerance in positional accuracy.

Opinion: Weakly consistent shared state will be key to the success of distributed gaming.  The DIS protocol itself is limited in terms of scalability, but presents a good starting approach to distributing a game if the implementation design allows for more scalable protocols to be inserted at a later date.  A sample approach for an expandable shared state mechanism may be found in [Mellon95].
b) Predictive Contracts

An excellent optimization to a weakly-consistent data model is the use of predictive contracts to hide latency and reduce network accesses.  A generalization of the dead reckoning algorithms used in DIS-based systems, predictive contracts [Mellon95] allow data items that change over time (e.g. position) to be transmitted as a starting value and a contract that predicts future values of that data item.  Data items are not retransmitted, regardless of how many changes are made, until the contract is broken (e.g. an error tolerance is exceeded).  Consumers may extrapolate approximate values of data items from the initial value and its attached contract.  This extrapolated value provides a reasonable estimate of a data item’s current value at its point of origin, regardless of network latency between producer and consumer.  Contracts may be simple vectors (‘moving North at 10 mph’), waypoints, bounding boxes, or similar constructs. 

Opinion: The value of predictive contracts in distributed gaming is extremely high.  Fewer network accesses leads to greater scalability in the system, but the real value is latency masking.  With the exception of when a contract is broken, the apparent coupling of distributed components can quite accurate. A number of algorithms for positional information may be taken directly from the dead reckoning algorithms used in DIS systems.  Additional work on auto-generation of predictive contracts is underway in the Advanced Simulation Technology Thrust (www.astt.com).

c) Interest Management

Interest Management is based on the principle that not all public simulation state is required by every entity.  The majority of entities have limited range of visibility or limited viewing resolution that restricts the amount and accuracy of remote data that must be brought to an entity.  To permit the infrastructure to deliver only the subset of state that is relevant to an entity, the entity must declare what data is of interest.  That interest set may change over time as an entity’s location or behaviour changes.  Some language must be established to express interest (subscribe), and that same language is also used to tag data items are they change in value (are produced).  The infrastructure may then establish a destination list for any given change in value for any given data item and route the new value appropriately.  Simplistic schemes along these lines have been very successful – indeed, simplicity is often a prerequisite for success.  [Macedonia95a, VanHook94,] were among the first in distributed training simulation to use geographic sectors as the expression / tagging mechanism, and the concept is well established in fields such as parallel simulation [Beckman88].

Opinion: Interest management will greatly enhance the scalability of a distributed interactive game (server or peer to peer), but only under certain conditions.  First, the game must have a playable structure in which entities cannot view all other players simultaneously at a high level of resolution. Distance, levels, walls, or sensor capabilities are all viable options.  Second, interest expressions must be cheap to execute.  Like a distributed caching mechanism, operations on the critical data acquisition path cannot require complex evaluations.  

A number of approaches and some software is available in the DoD to support interest management.  Defined in [Mellon96], two levels of interest management languages are recommended: an expression scheme tailored to an application domain (e.g. “all <smoking> <tanks> <within> <a 10 km radius> of my_current_position”), and a low-cost generic expression mechanism suitable for network traffic and supporting multiple applications (e.g. “deliver any packets tagged <X> or <Z>”).  An implementation spanning these layers is described in [Powell96], where user-defined predicates are used to express interest and evaluate packets for delivery.  A separate mechanism (routing spaces) was later added to the HLA RTI Data Distribution Management function to address the same problem area.
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Figure 1: Reduction in interaction evaluations via hierarchical interest management.

d) Networks and Protocols

Considerable work has gone into extending the capabilities of the network hardware and underlying protocols. Specialized hardware and software exists to increase multicast support. A limit of approximately 3,000 groups was encountered in the STOW97 exercise [Aronson96].  Achieving that number of groups required substantial improvements to the operating system and to hardware at both LAN and WAN levels.  While 3,000 groups was substantially more than off the shelf hardware could support (on the order of 30 to 300 groups), a need for 10,000 groups was initially estimated to efficiently handle the traffic loading of STOW97, thus the use of multicast in large-scale simulation must be altered.  The root of the problem is the industry focus on video-on-demand applications. Far fewer multicast groups are required for that application area and little progress has been seen in support for very large numbers of groups. Accordingly, research is underway for alternate algorithms that reduce the number of multicast groups required to link large-scale distributed simulations [Powell97]. [Macedonia95b] provides data and pointers on multicast support within the Internet (MBONE).

A new protocol has been defined for inter-simulation communication in the DoD: The HLA Run Time Infrastructure (RTI).  Up for IEEE standardization, the RTI supports connection schemes similar to – and expanded from – its two predecessors: DIS and ALSP.  Scalability improvements have been added to support larger exercises and common services have been standardized. Versions of the RTI exist in the public domain
, as do DIS support libraries (www.metavr.com).  Lighter-weight versions of the DIS protocol (referenced above) have also been defined with the commercial distributed gaming market in mind.

Opinion: many of the concepts implemented in the above protocols are of great value.  However, the focus of the HLA RTI on interoperability, multiple hardware and language interface issues and support for legacy systems may be more than a single game for a dedicated hardware platform might require. Potential runtime performance penalties, memory image size and an interface richer than absolutely required are always concerns when working within the tight constraints of a low-end PC or a standalone game station.  Case by case analysis will be required for use of the above software packages, including issues such as: number and types of destination platforms, time and effort saved, runtime overheads, cost to acquire, support available, and patent concerns. DoD software may greatly assist in getting a distributed game up and running, or it may be overkill for your purposes.

e) Topology

DIS was designed around a fully distributed, peer to peer communication mechanism. While having low inter-processor latency, this topology does not scale well, and provides several fairness challenges in an unregulated, environment with non-uniform latency and bandwidth. Much of the effort in the DoD has gone into working around these basic limitations.

Recent work has begun to experiment with a particular kind of client-server topology, where the majority of the modeling is done via a central server. I/O, rendering, local actions, and predictive contracts to mask latency between client and server are handled by the client computer. One benefit to having the simulation executing at a single server site is that combat resolution is intrinsically fair. Another is that the requirements on the communication infrastructure are much simplified. Clients do not talk to one another, so there are fewer connections to maintain, and large-scale multicast between clients is not essential.

As an extension to the basic client-server topology, [Mellon98] and other projects have shown that high performance computing in the form of cluster-based multi-computers can be applied. This allows the application of multiple processors to the simulation, and the use of high performance communication technology amongst those processors. This reduces latency and increases bandwidth between the processing elements that are doing most of the modeling. Executions of 50,000 and 100,000 entities have demonstrated on clustered super computers in the SF Express program (http://www.cacr.caltech.edu/SFExpress), but again cost management issues arise.  PC-based clusters are expected to be quite cost effective while still providing a substantial compute base for real time training.  Systems such as Beowulf (http://beowulf.gsfc.nasa.gov/consortium.html) have demonstrated high performance at a surprisingly low cost.
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Figure 2: Centralized execution of communication-intensive models reduces network load.

For increased scalability, a hierarchy of computing nodes can be created, where a central cluster serves a collection of distributed servers that in turn serve end-user clients. The JPSD program described above used a variation of this technique by creating a high-speed backbone interconnecting small DIS-style sub-networks. The data delivered to each sub-network was managed using interest predicates.

Opinion: Central servers add hardware costs to the system and a latency increase between players, but greatly simplifies connectivity issues and offloads work from the clients (freeing cycles for local gaming effects or reducing the need for a higher performance client host). This approach is much more likely to be successful in a low-bandwidth Internet environment and is supportable by home PCs.  Hierarchical sub-nets are a natural extension to allow tighter connectivity between localized clients.  Variations of these techniques are already in use in some gaming systems.  

f) Terrain and Environment

Military operations are heavily influenced by terrain, weather and environment and so military simulation developers have invested a great deal of effort into simulating the natural environment. This has included developing models of terrain and environmental effects as well as physical models (such as inter-visibility between two tanks) and cognitive models (e.g., optimal use of cover and concealment on terrain) that make use of the environment. In addition, the DoD has invested in a common interchange format for synthetic environment data. This format, called SEDRIS, includes both polygonal models and models of abstract features such as buildings, forests, etc.

SEDRIS

The SEDRIS project (http://www.sedris.org) was conceived and implemented to capture and provide a complete (terrain, ocean, atmosphere, and space) data model of the physical environment, access methods to that data model, and an associated interchange format. These SEDRIS developed mechanisms facilitate interoperability among heterogeneous simulations by providing complete and unambiguous interchange of environmental data. The range of M&S (Modeling and Simulation) applications addressed in the SEDRIS development includes training, analysis, and system acquisition and supports visual, computer generated forces, and sensor perspectives. Additionally, SEDRIS provides a standard interface for geographic information systems, which are key components in the generation of complex integrated databases for simulation applications. The data interchange specification supports the pre-runtime distribution of source data, three-dimensional models, and integrated databases that describe the physical environment for both simulation and operational use. SEDRIS includes several general classes of information that pertain to simulated environment databases and the database generation process: surface and volumetric data, 2-D and 3-D features, 3-D models and icons; textures, images and colors; material attributes; and various animations that describe predetermined events.

A simulated environment database, for use in M&S applications, is an integrated set of data elements that describes a defined geographic region. It must contain a consistent and correlated description of the environment that is appropriate for the simulation objective. Additionally, it often includes data describing simulation elements and events expected to take place during simulation execution. For example, data representing trees in a forested region may be found in the database along with data describing the geometry of the vehicles that may drive through the forest and impact trees during an exercise. Philosophically, the physical surface and volume of a vehicle is as much a part of the environment as the physical surface and volume of the trees. Thus, generic vehicle models are considered part of the pre-exercise transmittal, however vehicle instantiation and action are controlled by the run-time scenario (i.e., although the physical structure of a basic vehicle is part of the SEDRIS transmittal, movement and behavior of specific vehicles are not).

Dynamic Multi-player Terrain

Dynamic environments greatly improve the realism of simulations and games. In the real world, ground attack aircraft follow tank tracks to find targets; simulations need to provide these cues as well. In the real world, bombs cause craters, make roads and bridges impassible and damage buildings. Soldiers digging trenches and sowing minefields alter the terrain in ways that affect subsequent actions. Games should mirror reality in these cases as well. The problem gets more complex when dealing in a multi-player environment. Environment and terrain databases can be extremely large and so must be passed prior to run-time. In addition, multiple avatars can be altering the same terrain at the same time (think of two bombs going off in the same area, or two smoking vehicles).

The STOW Synthetic Environments project came up with a mechanism for handling multi-player terrain interactions. In this environment, static terrain databases are distributed to all players in advance. At runtime, a single computer is nominated as the terrain scribe. No player can modify the terrain except the terrain scribe. Instead, other players make changes to their local terrain (for example, building a tank berm). Each player nominates its changes to the scribe. The scribe checks for overlapping changes, resolves conflicts and ordering as necessary and then informs all of the other players of the changes. This ensures consistency of terrain across all simulations. The changes handled by the scribe can be in the form of changes to the polygonal surface of the terrain or can be specified in terms of distinct change events to abstract features (e.g., changing the damage state of building X from undamaged to slightly damaged).

Coordinate Systems

The earth is not flat, but it would be easier to build virtual worlds if it were. Military simulations must take not only local terrain but also the shape of the earth into account – these days you’re likely to get shot by a missile from over the horizon. First generation distributed simulations such as SimNet represented all positions in a geocentric coordinate system – that is, a rectangular coordinate system with its origin at the center of the earth. The problem is that nobody thinks of their location on earth in those terms (where do I live? Well, go the center of the earth, hang a right, go straight for 10 miles …) and so these simulations spent a lot of time, up to 30% of their total computation, just converting back and forth between geodetic (latitude / longitude) and geocentric coordinate systems. The STOW system came up with something called the global coordinate system (GCS) which broke the surface of the earth into a series of tiles (www.bos.saic.com). GCCS offers the accuracy of the geocentric coordinate system but is much more efficient to compute.

Opinion: Maintaining the state of distributed terrain and natural environment data is a tremendous challenge: the data sets are large and complex and can easily swamp individual player machines. In addition, not all players need the same fidelity of information. A tank driver needs to know if a road is impassibly muddy and so his computer must include a detailed representation of the trafficability of the roads and open terrain. On the other hand, the tank driver’s commander just needs to know whether travel through the area has bogged down and if so, why – he needs a generalized environmental picture. Thus, synthetic environment should use multiple resolutions and interest management as required to support all user’s needs and constraints. 

The exact algorithms and representations used for military environmental modeling are likely too detailed for most games, however the general approaches offer good opportunities for multi-player gaming. General information on synthetic environment models can be found at the DMSO web page (http://www.dmso.mil) and the SAIC Burlington page (http://www.bos.saic.com). Information on the in-aptly named Compact Terrain Database (CTDB) format can be found via the ModSAF page (http://www.modsaf.org)

g) Automated Behaviors

Representing Behavior

Military simulation systems typically immerse players in an extensive virtual environment. In general, the number of live players is small but the total numbers of tanks, ships, planes, etc. is large. In order to flesh out the battlespace with realistic players, significant emphasis has been placed on automated behavior representation both for friendly and enemy forces.

These models fall into two general categories: at the high level are cognitive models representing the decisions made by automated players. At a lower level are models representing basic skills – the ability to follow roads, avoid bumping into things and other such “common sense” actions.

One well known simulation, ModSAF (see www.modsaf.org) uses a representation known as task frames. Task frames are a structure by which a set of tasks can be executed, taking into account both prioritization and concurrency. Individual tasks represent individual behaviors: examples would be movement while maintaining cover, driving down a road. Task frames control when tasks are executed – if someone starts shooting at you while you’re moving down the road, suddenly getting from point “a” to point “b” is no longer your most important consideration. A situation evaluation task would immediately be executed, followed by tasks to fight or retreat.

Other simulation frameworks, including SimCore [Aronson94] and Toccata [West98] have used a state machine approach to representing behaviors. State machines offer the flexibility of task frames and also add the ability to hierarchically decompose behaviors and explicitly represent concurrencies and interrupt  conditions.

Rule-based approaches have also been used effectively in representing behaviors. The SOAR architecture [Laird98] uses a specialized rulebase to control automated players. This approach was demonstrated effectively in the STOW97 exercise and has more recently been applied in the gaming world. The AES framework [Aronson92] used Nexpert Object, a commercial rule-based system, for the same purpose, invoking rules as required by scenario events.

Communications and Collaboration

As games get more complex, automated players have to do more than act intelligently on their own. In a game with a large number of players, automated players need to be able to coordinate with other players, whether real or automated. The Advanced Synthetic Command Forces Program (ASCF, see www.astt.com) has looked at using constraint satisfaction algorithms to represent commander’s behavior, i.e., behavior across multiple players. Another ASTT program is currently investigating using planning algorithms for the same purpose. In addition, a specialized language called CCSIL (http://ms.ie.org/cfor/) has been developed to represent the communications among commanders, subordinates and peers.

Opinion: Any representation of behavior is expensive. If absolute performance speed is of ultimate importance, then most of the behavior formalisms listed above will only add overhead. If, however, you are looking to build sophisticated behaviors to build up behavior in manageable chunks, then these techniques can be quite useful. Likewise, CCSIL is large and somewhat cumbersome to use – in this case, because it must represent a wide range of real-world military communications systems. However, the underlying concepts, if implemented in a pared down manner, are quite valid for both single-workstation and distributed games.

h) Visualization Resolution versus Model Resolution

The visualization requirements of DIS are 1 meter resolution. This translates almost directly into a particular rate of update for entity state data. However, it is possible to use a much less detailed internal model of the synthetic environment, and “smooth” the result when it is converted for graphical display. This approach reduces the demands on the more limited network resources while placing extra interpolation load on the clients (which may have graphics accelerators to address that load).

i) Composability vs. Inheritance

The use of object-oriented programming techniques is prevalent in DoD research programs and other large-scale development efforts. The tendency of OO designers is to use inheritance to represent the variety of objects in the simulation: be they vehicles or creatures. However, experience shows that the use of composability provides much more flexibility, reusability, encapsulation, and automation of scenario generation. The use of inheritance to manage software interfaces is essential. But its use for representing platforms, vehicles, equipment or personnel is limited. Aggregation is preferable.

A primitive form of this concept is found in many games that contain a bit-vector of all the available things or properties that a character may have. By setting a bit, the character now has that object or characteristic, allowing the model of that object to come into play. Composability takes this concept to the next level by providing a software framework where software objects that come with model code are able to be associated with such a character. The flexibility of this framework provides the ability to construct new models by aggregating old ones in new combinations without writing any new code, thereby saving development costs.  Further, all of the properties of a component, from its simulation behavior to its icon in the level editor are encapsulated, and may be developed independently from other components. This significantly reduces the complexity of the code and its cost.

j) Time Management and Event Scheduling 

Time Management is concerned with the synchronization of clocks on the various processors participating in a distributed simulation. For training simulations, these clocks are real time clocks: usually the hardware clock. For analytic simulations, the clocks are in software and may be independent of real time and may advance at an uneven rate with respect to real time, but must still be synchronized between processors.

Events within the simulation are scheduled to occur at a particular time. The scheduling algorithm in training simulations tends to be relaxed, allowing the event to occur when processing time is available. In analytic simulations, the clock is not advanced until all earlier events are performed. Thus, the combination of clock synchronization and scheduling determine the order of event execution.

Clock Synchronization

In analytic simulation, complex distributed consensus mechanisms are used to control the advance of local clocks.  A summary of Parallel Discrete Event Simulation (PDES) algorithms may be found in [Fujimoto90]. While consuming a lot of overhead, these algorithms are able to provide repeatable event orderings regardless of the configuration of simulation. Conservative techniques such as Chandy-Misra delay event execution until ordering is verified, whereas optimistic techniques based on Time Warp allow immediate event execution with rollback to correct ordering violations.

In real time training simulations, local hardware is relied upon to maintain a clock. Over a period of hours or days, these hardware clocks may drift enough to cause noticeable errors in interaction. The Network Time Protocol (NTP) is commonly used to reset clocks. Synchronization to an accuracy of approximately one millisecond can be maintained by NTP, although a “tuning-up” time of hours or days and some level of background traffic is required.  For lower overhead synchronization and better accuracy, Global Positioning Satellite (GPS) receivers are sometimes used at each site to synchronize local clocks to a central reference clock associated with the satellite system.

Event Scheduling

In discrete event simulation (DES), the processing of the current event causes new events to be scheduled for a future time (e.g. the time at which a shell impacts can be known when it is first fired). DES does not process events at a repeating time interval, but only at the time requested, allowing time steps in which nothing interesting occurs to be skipped. Event scheduling may take into account priorities, such that events that are more significant to the outcome will be treated preferentially. 

Opinion: It has become clear that the overheads of analytic simulation can rarely be justified in real time execution. However, it is not necessary to put yourself at the mercy of drifting clocks and unpredictable network latencies. The use of predictive contracts to hide latency, and / or a central combat resolution server can avoid a lot of variation that would otherwise lead to invalid simulations or unsatisfying or unfair action-based gaming.

6) Conclusion

In this paper we have demonstrated the applicability of distributed simulation technology used in military training systems to Internet gaming applications.  While exact matches and overlaps are few, numerous opportunities exist to leverage off of algorithms, ideas and lessons learned from the years of work in distributed interactive simulation.

Military requirements for security, high fidelity and interoperability will restrict the amount of software that may be directly used in distributed gaming.  Exceptions may exist at the infrastructure level but differing assumptions on hardware, languages and performance must be carefully examined up front.  Simpler implementations based on less stringent gaming requirements may produce more focused infrastructure solutions.

Obviously we have only touched on the technologies used in distributed, interactive training and the size of systems achieved.  Fortunately, most government programs are documented and described to within an inch of their lives -- further information is not difficult to obtain.  Your favorite search engine will get you into the heart of this area with key words such as: DIS, “distributed simulation”, “advanced distributed simulation”, ADS, “Synthetic Theater of War”, STOW, “Data Distribution Management”, DDM, and “HLA RTI”. URLs with summary papers and bibliographies include ours (www.jade.saic.com), the Defense Modeling and Simulation Office (www.dmso.mil), and The Simulation Interoperability Standards Organization (http://www.sisostds.org/).  
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� Over 1.5 billion dollars per year is spent in acquiring new systems alone, according to the Committee on Modeling and Simulation (�HYPERLINK "http://www.nap.edu/readingroom/books/modeling"��http://www.nap.edu/readingroom/books/modeling�) 


� 73 Easting was a Gulf War battle that had sufficient data captured regarding actions, positions, and responses to allow accurate replays.  Some commercial games have based scenarios on 73 Easting data. 


� ‘Entity count’ is the de facto standard of measurement in the distributed training community.  However, strict numerical comparisons are not possible.  Entity counts will vary considerably as fidelity levels, hardware implementations and types of entities change across training exercises.  A 1,000 entity exercise may require more hardware to run than a 100,000 entity exercise.


� And in fact DMSO is funding exploratory options for games constructed via the RTI.
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