EVENT DISTRIBUTION AND STATE SHARING
IN THE THEMA PARALLEL DISCRETE EVENT SIMULATION
MODELING FRAMEWORK.

Darrin West, David Itkin, Jim Ramsey.
SAIC, Simulation Technology Division.
1100 N. Glebe Rd., Suite 1100
Arlington, VA, 22201.
E-Mail: west@jade.std.saic.com

Henry Ng.
Naval Research Laboratory
Code 5585,
4555 Overlook Ave., SW
Washington, DC, 20375-5337.
E-Mail: ng@ait.nrl.navy.mil

KEYWORDS: Parallel, Distributed, Discrete Event Simulation, Object-Oriented, Framework.
ABSTRACT

Combat models require access to shared state such as entity position data and to exchange area effect events such as detonations. While traditional Parallel Discrete Event Simulation has a point to point communication paradigm, point to multipoint solutions are more efficient for this problem. We have developed a simulation framework called Thema which addresses these issues while providing transparent access to parallelism and type safe exchange of events and data between entities. Thema is targeted to small inexpensive multiprocessor machines and clusters, and uses the SAIC developed Time Warp kernel Tempo.

1. INTRODUCTION

In order to take advantage of recent advances in high performance computing (HPC), the Department of Defense (DoD) established the DoD High Performance Computing Modernization Program (HPCMP). The HPCMP is chartered with acquiring and making available to DoD researchers the most advanced HPC hardware and software. The HPCMP’s software initiative, the Common High Performance Computing (HPC) Software Support Initiative (CHSSI), is funding the development of parallel software that applies HPC technology to each of the DOD’s computational technology areas (CTA).

The Forces Modeling and Simulation (FMS) CTA, headed by Mr. Robert A. Wasilausky, is applying HPC technology to the large scale simulation of force level modeling. Under a Naval Research Laboratory contract, being run by Mr. Henry Ng, we have been developing a framework that applies Parallel Discrete Event Simulation (Fujimoto 1990) to the DoD simulation based design and simulation based acquisition problems. Due to the broad scope of this problem, both in model fidelity and potential uses, we needed to design an extensible and composable parallel modeling framework which we called Thema.

Thema is Latin for theme, meaning: "a musical phrase upon which variations are developed", or "a recurring, unifying subject or idea". Thema is an object oriented framework for developing and executing computer simulations. It provides type safe point to point and point to multipoint exchange of Events between Entities at discrete points in time. It provides type safe access to arbitrary shared state by multiple Entities. Thema is designed to be scaleable in its handling of the complexity of a simulation, both in terms of the number of classes and the number of Entity instances. These goals are accomplished by supporting loose associations between Entities and subcomponents of Entities called Models, and by providing mechanisms that distribute data and events to only those Entities that need the information.

Thema is a set of C++ classes that run on Tempo (West and Mellon 1995), a TimeWarp based parallel simulation kernel optimized for shared memory multi-processors. Tempo also supports optimized sequential execution for times when turnaround time is not a priority, or when a series of executions is necessary, to reduce statistical variance, for example.

Thema addresses the requirement of modeling of Entities interacting in arbitrary ways within a synthetic environment. Doing this efficiently requires interest management to avoid broadcasting data. We needed to overcome the limitation in traditional Parallel Discrete Event Simulation (PDES) of only having point to point communication. This mechanism was extended to proved synchronized access to shared data in PDES.

1.1 Summary

Section 2 describes the set of requirements, design goals, and principles that we adopted for Thema. These were based on the needs of general PDES and of combat modeling in particular. The combat modeling domain is very broad. Entities may be represented at practically any level of detail. Thema was designed to be independent of this application level policy decision, supporting any level of detail. By being highly optimized, Thema is able to support the finest detail without becoming an overhead burden. Research is ongoing in support of dynamically changing the level of detail to further reduce computation by modeling only the details necessary at each moment in time.

Thema is intended primarily to address the demanding fast-as-possible simulation domain, but is designed to support real time simulation using a wait-for-real-time approach. A focus on performance attempts to address concerns about the execution being able to keep up with the progress of real time. While the intended domain of modeling is for combat, Thema is a practical choice for many other types of discrete event, combined, or time stepped simulation.

Figure 1: Thema/Tempo Architecture.

As shown in Figure 1, Section 3 discusses details of the Thema design, functions, and implementation issues. Thema is broken into three major components. The Basic Services provide Entities, Models, Events, and EventHandlers which are used to model the state and behavior of domain entities. The EventDistributionManager uses Categories and InterestSets to tag DistributionManagementEvents for use in efficient event distribution between each producer and a number of consumers. The DataBase components provide automatic reflection and coherency of arbitrary DataBase elements in support of efficient access to shared simulation state. The CompoundElementDataBase is an optimized DataBase whose elements are composed of multiple SubElements. The Basic Services are built using Tempo which runs on multicomputers. The EventDistributionManager is implemented using BasicServices. The DataBase uses the EventDistributionManager, and interfaces to the HLA RTI (DMSO 1996) to distribute the simulation over a network.

Section 4 gives a short description of Tempo. Sections 5 and 6 talk about new work and gives conclusions.

2. DESIGN PRINCIPLES AND BENEFITS

Thema is intended to provide a user friendly layer on top of Tempo, and to meet the specific requirements of the CHSSI FMS project. Thema is designed for use in very large scale applications such as JSIMS, STOW and other joint level, theater scope domains (Powell 1997; Aronson 1996).

In order to achieve the scale needed in these exercises, multiple processors are needed. Functional decomposition does not result in as much intrinsic parallelism as parallelizing between Entities. We therefore chose to use traditional PDES techniques.

The military domain requires the exchange of large amounts of shared state data, for example, vehicle positions. This driving requirement led to the selection of TimeWarp as the specific PDES synchronization technique and to the development of coherent reflected shared state mechanisms. The choice of TimeWarp over conservative mechanisms was based on the existence of complete connectivity patterns between Entities sharing state that way, which would lead to repeated deadlock or excessive NULL message traffic in the many channels needed to realize a conservative solution. Avoiding the application burden of declared lookahead also played a role. Long experience using and developing distributed Sim++ (Baezner et al. 1992) and more recent experience developing shared memory Tempo was also factored in. Coherent reflected shared state mechanisms provide a simple user interface for Entities to share state without explicit application intervention.

There are two overarching principles that affected the design of Thema: address the composability needs of large scale simulations, and address the performance needs of large scale simulations. There are two driving functional needs addressed by Thema:

· State Sharing. PDES Entities interact only using time stamped events. However, the application domain requires the sharing of state between many Entities. We needed to extend the basic PDES paradigm to address this issue in a scaleable, transparent way, making it as automatic as possible to avoid burdening the modeler.

· Event Distribution. PDES Events are point to point. However, the application domain requires area effect events such as Transmission or Detonation Events. We needed to extend the basic PDES paradigm to implement efficient point to multipoint communication to distribute these area effect events to many consumers.

There are four architectural principles used in designing Thema to meet the domain specific requirements. These are application level usability, composability, performance, and internal software modularity.
2.1 Usability

The principle of usability is a subjective one that insists that the needs of the application writer be given first place in the design of Thema. Functionality, features, and design choices are made that minimize the effort necessary to realize the goals of large scale modeling, while still meeting the domain specific needs. This principle has lead us to pursue several derived requirements:

Type Safety. Native language type information about data is critical to ease of use, software reliability, and maintainability. In any communication oriented system, data eventually passes through a generic layer in which language level type information is lost. Ensuring that communication is realized in a type safe manner is a key construct of Thema.

Transparency. Transparent access to lower level functionality such as parallelism and data distribution are fundamental to Thema. We have made it possible to build an application without exposing the fact that the models are executing within a TimeWarp environment. Transparency is in tension with exposing lower level details for tuning and performance reasons. We chose ease of use over openness in the user interface, but addressed openness in the internal implementation of Thema by encapsulating functionality so it may be specialized internally.

Flexibility. Thema adheres to the principle that the application knows its own needs best, and therefore much of the way in which Thema functionality is used has been left to application policy. Much of the Thema functionality is entirely optional and is provided to help the application writer more quickly realize a solution, but leaves open many other alternatives. This results in necessary implementation independence between Thema functions so it is possible for the application to use only a subset of functionality.
Framework. Thema was designed to be an object oriented framework, meaning that while it provides core simulation infrastructure functionality, it remains a simple set of classes that the application must extend and specialize. Thema also implements a framework style flow of control which manages resources such as communication internally, and calls back to application specialized functionality. This in contrast to layered approaches which tend to passively provide services on demand.

2.2 Composability

The principle of composability addresses the overarching need to easily construct large scale simulations. As simulations grow large, they also tend to increase the number of classes of Entities and Models, as well as the number of instances. One measure of whether a system is scaleable in the number of classes is how difficult it is to add a new class or modify an existing class in an already large simulation. There are several design properties in Thema that help address composability.

Independence. In order to realize scalability, modules must remain relatively decoupled to have a low or preferably constant amount of effort involved in adding a new module as the size of the simulation increases. One measure of coupling that we are trying to minimize is compilation dependencies, for example, the number of files that must be recompiled when a class’s declaration is modified. Thema supports decoupling at two levels:

Entities. The design of the Events and EventHandlers that are used by Entities for interaction allows producers to be modified independently of consumers and vice versa.

Models. A Subject/Observer pattern (Gamma et. al. 1995) is provided to allow Entity subcomponents called Models to have limited coupling. A new Model may be attached to an existing Model and observe state changes without editing the existing Model.

Pluggability. The mechanical process of plugging in a new component is simplified when using Thema. The component must be compiled and linked into the simulation executable, but with careful adherence to application level policy and taking advantage of Thema support for this, modules may be added and removed with little effort. By remaining encapsulated behind this module interface, module addition and removal may be accomplished without modifying existing components.

Extensibility. Many of the classes in Thema are templated such that Thema functionality can be quickly extended to use application specific data structures. Being object oriented, Thema class functionality may be overridden easily by subclassing.

Expandability. Thema places no limits on how far a simulation may be expanded. The underlying operating system may run out of memory for further expansion, but the internal Thema data structures are designed to have no artificial limits.

2.3 Performance

The principle of performance drives many properties of the design of Thema. Examples include both interface choices that impact performance, and infrastructure implementation algorithms.

Simplicity. Only by limiting the functionality of Thema to a simple set, is it possible to have high performance. Simplicity avoids burdening the critical path of Event execution with unnecessary overheads. More complex functionality can be built up from the simplistic, when necessary, but without sacrificing performance for applications that choose not to.

Distribution Management. Using a publish and subscribe paradigm, data and event distribution is limited to only those Entities actually interested in the data. This removes unnecessary processing in delivering, receiving, and processing unwanted data.

Scalability. Being able to add more Entity instances to a Thema simulation with only a constant amount of extra processing required is the main goal of scaling to large numbers of Entities. This requires limiting the number of interactions between instances to only those necessary.

Point to Multipoint Communication. In concert with distribution management is high performance communication. Once consumers and producers are matched up, the data must flow as efficiently as possible. This requires taking into account the low level physical architecture such as a bus oriented network or shared memory backplane.

Physical architecture. By focusing on shared memory architectures Tempo and Thema significantly reduce communication costs and Event processing overheads. To overcome the limitation of executing within a single cluster, two approaches are being developed. We are developing simple techniques for creating a remote controller/display to allow remote participants in an exercise. We are also integrating the DMSO HLA RTI directly into Thema in as transparent a manner as possible.

TimeWarp. We selected TimeWarp synchronization in preference to conservative synchronization because it tends to achieve a higher fraction of available parallelism from an application. Using Tempo we are able to use incremental state saving and are developing completely transparent Automatic Incremental State Saving (West and Panesar 1996).

2.4 Modularity.

The principle of developing the Thema implementation in a modular manner has several benefits.

Encapsulation. The encapsulation inherent in the design of components within the implementation of Thema allows for a quick prototype to be developed followed by incremental improvements (for reasons such as performance) without impacting the interfaces between components. This also allows for replacement of a component with one more suited to a specialized application.

Separation of Communication, Notification, and Organization The properties of communication, data/event organization and data/event arrival notification are independent of one another. This allows different techniques in each area to be examined without requiring changes to the others. Various applications will have different needs in each area and are able to reconfigure these properties quickly and efficiently.

3. INTERFACE AND FUNCTIONAL DESIGN

Thema is broken into three major components: the Basic Services, the EventDistributionManager, and the DataBases. The Basic Services are implemented on top of Tempo and provide a more user friendly interface, type safety, and simple simulation support functions. The EventDistributionManager adds functionality to address area effect Events by provided event distribution. This allows an Entity to subscribe to a subset of Events in the simulation, thereby reducing communication, and processing of unnecessary Events. The Thema DataBase adds shared state functions, allowing Entities to be implemented in a familiar manner with a collection of global objects shared among a collection of Entities. The CompoundElementDataBase extends the DataBase by allowing for the decomposition of a DataBase Element into individually modifiable SubElements. This results in lower state maintenance overheads since only the changed parts of the element need to be communicated. The distribution of Events and data Elements are managed efficiently using a common subscription mechanism based on Categories. The data and Events are segmented by Category and only the portions needed are subscribed to and delivered. The following subsections describe the functionality and classes of these three Thema components in more detail.

3.1 Basic Services

Figure 2: Thema Basic Service Classes.

The basic services layer of Thema provides classes that allow simulations to be decomposed into pluggable components and to interact in an easily useable and type safe manner. These classes are depicted in Figure 2 with an example showing the relationship to Tempo. These classes encourage a loose association between simulation components that leads to better scalability in the complexity of the simulation as it evolves. The type safety and usability features require minimal effort on the modeler’s part by using C++ compile time type checking at the interface. Where type information is lost in communication, it is added back transparently at run time. The basic services of Thema are intentionally simple so that they can be implemented very efficiently.

3.1.1 Entity and Model

Thema provides an Entity class which is specialized by the modeler to represent a domain entity in the system under study. Entities interact using time stamped Events which are directed to a single Entity. If a domain entity is sufficiently complex to warrant decomposition and concurrent execution on several processors, it must be mapped to several Thema Entities.

Thema is implemented on Tempo, a TimeWarp based discrete event simulation kernel. Each Entity is mapped to one TimeWarp logical process (LP). Each processor may be responsible for executing many Entities. Each Entity may be mapped to a different processor. These potential combinations are transparent to the modeler, since Entities are not allowed to access one another directly, and only interact using Events.

Entities may be decomposed into Models. Models may contain other Models hierarchically. Models within the same Entity may interact by directly invoking one another’s methods. To provide for independence between Models, the modeler may choose to have Models interact using only the Subject/Observer pattern defined below. This disassociation between Models allows for parts of the Entity to be easily reconfigured in a way that is transparent to much of the rest of the Entity. In other words, the dependencies between Models are minimized. In this way, the modeler is able to reconfigure the Entity and maintain encapsulation.

Examples of Entities include individual vehicles such as Tanks, or Planes, portions of vehicles such as an Aegis combat control system, groups of vehicles such as a convoy, or abstract concepts such as a node in a queuing system. There are no restrictions on what an Entity may be specialized to represent. A Model, similarly may be made to represent anything such as a kinematics, sensor, or cognitive model, an individual vehicle within an aggregate entity such as a brigade, or the brigade itself. These choices, as well as internal organizational ones having to do with a concrete Entity’s structure are policy questions best answered by the Thema user.

3.1.2 Event and EventHandler

The modeler specializes class Event to create different types of Events to send between Entities. The Event class is really an event notification message which is transmitted from one Entity to another, and whose arrival triggers the execution of an EventHandler (EH). Events may be specialized to hold any member variables, but the use of pointers are discouraged because of the potential for errors when reading variables out of remote Entities which may be at a different SimTime or executing concurrently. Each concrete Event class has a unique ClassId which is used to do run time type checking that results in automatic conversion into the appropriate class such that language level typing is achieved at the Thema to application interface without application intervention. A specialized type of Event called a StreamEvent allows for the exchange of arbitrary data structures. It is based on the standard C++ streambuf notion.

An EH is a templated class that is attached to an Entity so the Entity can respond to the arrival of a specific specialized class of Events. The EH automatically ensures that the type of the arriving Event is correct. The application overrides the executeEvent method to provide specialized behavior in response to the arrival. A ModelEventHandler is a specialized EventHandler that allows an EH to be attached to a specific Model in a type safe manner, meaning that the executeEvent function is passed a typed concrete Model pointer and a typed concrete Event pointer. Placing behavior in EH’s allows Entities and Models to be used in new ways without being changed, and without those changes affecting other modules. However, if desired, concrete Entity or Model classes may be modified to have methods added to them and have the EH call those methods in turn. A given Entity may have more than one EH attached for a given Event type. These EH’s are passed the Event in the same order that the EH’s were attached to the Entity. This capability addresses the example case where a ship has two independent antenna Models and both need to see a TransmissionEvent, so they attach two instances of an XmitEventHandler.

Note that the sending Entity needs to understand only the type of the Event being transmitted, not the type of the EH that will deal with the Event when it arrives. In this way, the sender is not affected by changes in the definition of the receiver, and may at run time be sending the same Event type to many types of receivers without knowing it.

3.1.3 Packages

A collection of Models and the EH’s that modify them can be considered a package. When a new model is added to a simulation, the EH’s that affect that model must also be added. The kinds of Events that a Model sends and handles are part of the definition of the interface to the package. If the Model expects to be wired into other Models either directly or through attachment of Observers, that is also part of the logical package interface. Packages can be plugged in and out of a Thema simulation easily because of this limited external interface. The notion of a package addresses the need for expandability and composabilty of the simulation application.

On a smaller scale, Models and Observers can also be considered a pluggable package. The external interface consists of the set of Models being Observed. This is a very simple interface, which is what makes it so easy to plug the package in and out.

3.1.4 Subject/Observer

The Subject/Observer pattern is used extensively in the interface and implementation of Thema. A Subject is a class that provides a state change notification interface. When the state of a concrete Subject changes, the Subject class is notified by having the application call the notify method. Observers are attached to a Subject. When a Subject changes, each attached Observer has its update method called back. The concrete Observer is thereby notified of each change to the Subject it observes. The benefit of using this pattern is that new Observers can be attached without requiring changes to existing Subjects. This encapsulation is necessary as a simulation grows larger.

For example, when a sensor is added to a platform, it needs to know the location of the platform to figure out how near are the targets. Without changing the KinematicsModel, or the KinematicsModel even being aware, a KinematicsModelObserver can be constructed that responds to changes in position and report them to the sensor.

3.1.5 Alarm

The Alarm class allows the application to set a time in the future when a callback will be made through the Alarm. The Alarm is specialized by the application to provide the callback behavior. Alarm gives the application a convenient way of getting a wakeup in the future without creating a unique Event and EH. Several Alarms may be created with as many wakeups outstanding simultaneously. The Alarm may optionally be automatically reset a fixed or infinite number of times with a fixed wakeup interarrival time.

3.2 Event Distribution Management

Figure 3: Thema EventDistributionManagement Classes.

The EventDistributionManagement module (EventDM) shown in Figure 3 with an example, is responsible for delivering each DistributionManagementEvent (DMEvent) to a set of consumers in an efficient manner. It addresses scalability in the number of Entity instances. This is a challenge because in a naive broadcast implementation, as the number of Entities increases, the amount of data consumed per Entity would increase linearly, resulting in an O(N2) explosion of communication and processing. To address this challenge the EventDM provides support to categorize DMEvents and distribute each category of them only to the interested consumers using an internal mechanism called a Channel.

The EventDM also addresses ease of use and expandability properties. It’s implementation separates data organization, communication, and notification, allowing each to be improved or tailored independently over time. There are only a small set of interface classes: Category, InterestSet, DistributionManagementEvent and EventDistributionManager, which are described in the following Sections.

3.2.1 Category

Category is a class that identifies a specific category of data or events. The application is responsible for determining the meaning of a Category and using it consistently. Categories are used to segment data for use in limiting the volume of data transmitted and consumed. Examples include: vehicle types such as air, land, or sea vehicles, geographic sector numbers (Beckman et al. 1988; Steinman and Weiland 1994), sending EntityId, receiving EntityId, or even abstract data like different kinds of statistical summary data (Powell 1996; Mellon 1996).

Thema can easily and efficiently match up consumers with the Events or data they are interested in using Categories. Any number of different application specific interest management schemes can be implemented using the Thema Category based scheme, and the application can build the most appropriate one for its needs. The application is in a unique position to take advantage of application specific information in categorizing the data to which Thema would not have access. Examples include derived or summary data, or any other application information that is not in the Event or data element being managed by Thema.

The application is responsible for tagging with a Category each Event before sending or each data element before updating, and for subscribing to Events or data using those Categories. Thema is responsible for efficiently transmitting the Events to each interested consumer. By restricting how many Entities receive an Event, scalability can be achieved, provided the application segments the Events effectively.

3.2.2 Interest Set

An InterestSet is a collection of Categories used to declare what data a consumer is interested in, or to what category an Event or piece of data belongs. InterestSets and associated organization managers may be part of an application specific distributed calculation to determine the mapping between application data and Categories. For example, one may wish to dynamically adjust sector size, or read broadcast synopsis data (Mellon 1996) and select interesting producers. InterestSets may be specialized to be parameterized in application specific terms (such as position and range) as opposed to the default Categories, but must convert the new parameters into Categories for Thema’s use.

3.2.3 DistributionManagementEvent

A DMEvent is a specialized Event that can be sent to the potentially multiple consumers interested in a given Category. It is tagged with an application determined Category and transmitted through an EventDM templated with its type. It is specialized in the same way as a regular Event and is handled using regular EH’s.

3.2.4 EventDistributionManager Template

The EventDistributionManager class is templated against concrete DMEvents so that language level typing can be performed. No other specialization of EventDM’s is required. By being templated against a concrete DMEvent, the EventDM is very easy to use and is extensible. The application subscribes to a stream of concrete DMEvents using an InterestSet. When the application subscribes, it provides an EH that will be called back for each arriving DMEvent that matches the InterestSet subscription. The application tags an outgoing DMEvent with an InterestSet (normally with just one Category). The EventDM distributes each DMEvent to all consumers that have subscribed to the Category of Events with which the DMEvent is tagged, and calling the consumer’s registered EH. The DMEvents are distributed through Channels.

The EventDM uses an Observer to watch for changes in the consumer’s subscription InterestSet and adjusts low level Channel subscriptions to get the correct Category of data delivered.

3.2.5 Channel

The low level communication mechanism that transports DMEvents is called a Channel. The Channel manages the subscription of producers and consumers using individual Categories, and distributes a DMEvent to each consumer in turn. It is possible to implement a Channel in a number of architecture specific ways, ranging from exploders, to IP multicast, to queues of pointers in shared memory. Channel management encapsulates communication and is independent of any specific organization or notification scheme other than having Categories as a parameter.

3.2.6 EventDistributionManagement Example

As shown in Figure 3, a Detonation may affect several Entities and is therefore routed through an EventDM templated against DetonationEvent. When it is sent, the DetonationEvent is tagged with an InterestSet containing a Category corresponding to the sector number that contains the position of the detonation. The EventDM uses low level Channels to route the Event to all Entities that are interested in DetonationEvents in that Category.

When an Entity is in a sector, the Entity must declare interest in receiving DetonationEvents from that sector. This is done by subscribing with an EventDM that is templated against DetonationEvents, and passing a DetonationEventHandler which will be called back whenever a DetonationEvent occurs in the interesting sector. The application also passes an InterestSet containing a Category corresponding to the sector number of the interesting sector. In general, the application would fill the InterestSet with all the Categories that overlapped an area within a range, where the range is a function of Event communication delays, detonation radius, Event velocity, etc. The EventDM attaches an Observer to that consumer InterestSet such that whenever the subscribed Entity moves (and updates its area of interest), Thema is informed of the corresponding change in the consumer InterestSet.

3.3 DataBase

Figure 4: Thema DataBase Classes.

The Thema DataBase (DB) module depicted in Figure 4 with an example, addresses the shared state requirements of modelers. There is no long term persistence of the elements in the Thema DB. It does run time reflection of state, making it similar to a distributed blackboard. Examples of what shared state is needed include vehicle positions, sensors, mines, or synthetic environment features such as craters or wind. One of the main reasons to have the DB have a distinct shared state interface is to allow for optimization relying on high performance hardware shared memory coherency on multiprocessor machines.

The DB allows multiple Entities to share objects in a coherent time managed manner. Data Elements are registered with the DataBase, then updated through time. The DB automatically detects those updates and reflects them to remote copies of the DB where the Elements are cached. Entities subscribe with the DB to tell Thema which data elements are interesting so it doesn’t have to send all elements everywhere. The Thema DB gives the application the usability of the familiar shared global variable paradigm within a PDES environment that normally precludes it, and the efficiency of an implementation using PDES techniques.

3.3.1 DataBase Template

The DB class is templated against any user class, and no other specialization is necessary. Consumers subscribe to data elements using an InterestSet. The DB on the consumer side caches reflected copies of data elements that match the Categories in the consumer’s InterestSet. This cache allows for queries based on Category. Producers register new data elements, tagging them with an InterestSet. The DB snoops updates to the registered data element using an Observer, and automatically delivers update events to interested remote DB’s. The DB is implemented using an EventDM and an UpdateEvent specific to the given data element type. A corresponding EH automatically updates the remote reflections. As producers proceed through time, they must update the Categories in the InterestSet that correspond to the data element to correctly categorize the modified element. As consumers change interest (for example, by moving a sensor) they must update the Categories in their InterestSets. The DB snoops changes from both producers’ and consumers’ registered InterestSets using Observers and adjusts Channel subscriptions accordingly.

3.3.2 Discovery Command

When an element begins to be tagged with a Category subscribed to by a consumer, or when a consumer first expresses interest, new elements will show up in the cache of the consumer’s DB. The application is notified of this using a DiscoveryCommand, which is registered when the consumer subscribes. The application is called back with a pointer to the new element. The DiscoveryCommand must be templated against the data element class for type safety and be must specialized by the application to respond to the callback. The application may ignore the callback and just use queries periodically to inspect the cached data elements. The application may attach an Observer to the new data element in the callback, and through it will be informed of each change in state of the data element as internal UpdateEvents are processed. This allows an application level policy decision to be made as to whether polling or triggering is used to respond to state changes. This mechanism demonstrates a variety of notification schemes distinct from the communication and organization schemes. The DiscoveryCommand is also used to inform the application when a data element ceases to match a Category in the InterestSet.

3.3.3 CompoundElementDataBase

There are times when only a portion of a DB element is updated. When this happens, only the changed portion needs to be reflected. The Thema CompoundElementDataBase (CEDB) allows for the registration and reflection of elements which are decomposed in to subelements. The new incremental update mechanism can respond efficiently to arbitrary combinations of sub-element updates. The typing, subscription, and notification mechanisms are practically identical to the regular DB in that it uses templates, InterestSets, DiscoveryCommands, and Observers.

3.3.4 HLA RTI Interface Module

As seen in Figure 1, the CEDB automatically interfaces to the DMSO HLA RTI. This is done using a conservative Entity which watches for changes in Elements and SubElements in the various CEDB’s and forwards those as RTI Attribute Updates. RTI Interactions are handled in a similar manner using the various EventDM’s. Thema Categories are converted to RTI Routing Space Extents.

The use of the RTI allows Thema to participate in larger HLA Federations. It also allows Thema to efficiently exchange data over a network where multiple consumers are interested in a particular Event or data element. Traditional distributed PDES systems would send several point to point events, wasting producer processing time and network bandwidth. The RTI is implemented using multicast, resulting in more efficient network initialization and reduced processing in sending and receiving network messages.

4. TEMPO

Thema is built on Tempo. Tempo is a TimeWarp based PDES kernel design to run on common multiprocessor workstations. It’s interface is primarily a simple Send method and HandleEvent callback. Providing a more comfortable, useable interface than what results from Tempo’s austerity is one of the reasons that Thema was developed. Tempo is highly optimized for shared memory multicomputers, avoiding all message copying, resulting in 25 microsecond event handling overheads on common Sparc workstations.

Tempo provides simple techniques to hide the complexity of TimeWarp from modelers who tend to be subject matter experts more often than parallel simulation experts. One of these techniques is automatic state saving which keys off application level memory allocations, and requires no special coding by the application writer. For the more inspired, Tempo provides many opportunities for TimeWarp specific optimization as well. Modelers may use the incremental state saving features of Tempo, or the Automatic Incremental State Saving tools under development.

Not all users want to execute their models in the same environment. We built Tempo and Thema to execute in sequential, parallel, conservative, and real time environments. For debugging and validation reasons we included deterministic repeatability of event handling order. Long, hard experience with distributed and parallel systems indicates that non-deterministic bugs in an application are extremely costly to locate and correct. Repeatability lowers those costs by ensuring that the simulation executes events in the same order each time in all environments. Repeatability is achieved using an algorithm based on Wide Virtual Time from Sim++ and Mehl’s algorithm (Mehl 1992).

5. OPTIMIZATIONS AND FUTURE IMPROVEMENTS

There are several significant improvement to Thema that are planned. We expect to replace the current implementation of Channels with a more efficient one that takes into account the low level machine architecture. We will be doing experiments with different interest management techniques, including dynamic sectorization and source based routing using positional synopsis information. We expect that this work, which must currently be done in the application, will lead to new standard features of Thema.

Predictive contracts are used to reduce the volume of updates between a producer and multiple consumers, for example, dead reckoning or linear interpolation (Mellon 1996b). We want to integrate these techniques or generic support systems for them into the Thema DB’s.

Performance optimization work that is underway includes load balancing research. We expect that the basic premise of shared memory and the Tempo design will easily incorporate this important feature.

Despite best intentions, defects remain in software, both in the application and in the infrastructure. We intend to research reliability of Thema simulations with the intention of being able to restart after a failure with little or no lost work. This may incorporate the checkpointing research that we are integrating with the Tempo state saving mechanism, or some other more dynamic correction mechanism. It would clearly be best to do local correction of a failure as opposed to a system wide restart.

6. CONCLUSIONS

The design of Thema meets the application domain requirements for functionality and usability. In particular, we have added access to state sharing and event distribution. Thema meets the high level principles of Composability, Performance, Usability. The internal Modularity, provides sufficient encapsulation to make incremental optimization of the infrastructure convenient and cost effective.

Thema is intended to be the most efficient object oriented, type safe, parallel discrete event simulation framework available. The addition of state sharing and event distribution functions in the presence of that efficiency make Thema unique.

ACKNOWLEDGMENTS

The author would like to thank Larry Mellon, Ed Powell, Glenn Tarbox, Steve Bachinsky, Jesse Aronson, Jeff Olszewski, and Rich Briggs for many profitable discussions about the role of shared state, and data distribution in distributed simulation, and the HLA RTI. Many of the ideas discussed in this paper were the result of collaboration between the author and these individuals and their contributions are gratefully acknowledged.

Funding for Tempo was provided by SAIC Internal R&D. The development of Thema was funded by NRL.

REFERENCES

Aronson, Jesse. S. “The STOW97 Systems Architecture and Implementation Design”, In the Proceedings of the 14th DIS Workshop, IST-CR-96-062, March 1996.

Baezner, D.; G. Lomow; and B. Unger. “A Parallel Simulation Environment Based on Time Warp”, The International Journal of Computer Simulation 1992.

Beckman, B.; et al. “Distributed Simulation and Time Warp Part 1: Design of Colliding Pucks”, In Proceedings of the SCS Multiconference on Distributed Simulation, Vol. 19, #3, 1988

Defense Modeling and Simulation Office, “HLA Interface Specification 1.0”, August 1996.

Fujimoto, R. M. “Parallel Discrete Event Simulation”, Communications of the ACM 33(10), pp. 30-53, 1990.

Gamma, E.; R. Helm; R. Johnson; and J. Vlissides. “Design Patterns: Elements of Reusable Object-Oriented Software”, Addison-Wesley Publishing Company, 1995.

Mehl, H. “A Deterministic Tie-Breaking Scheme for Sequential and Distributed Simulation” Proc. of the 1992 SCS Western Simulation MultiConference on Parallel and Distributed Simulation, V24, #3, Jan. 1992.

L. Mellon “Intelligent Addressing and Routing of Data Via the HLA RTI Filter Constructs”, Proc. of the 15th DIS Workshop. September 1996.

Powell, E. “The Use Of Multicast and Interest Management in DIS and HLA Applications,” Proceedings of the 15th DIS Workshop, September 1996

E. Powell. “The JSIMS Architecture”, Proceedings of the 1997 Spring Simulation Interoperability Workshop, 97S-SIW-078, March 1997.

Steinman, J. S.; F. Weiland. “Parallel Proximity Detection And The Distribution List Algorithm”, Proceedings of the 1994 Workshop on Parallel and Distributed Simulation, July, 1994.

West, D.; L. Mellon; J. Ramsey; J. Cleary; and J. Hofmann. “Simulation Infrastructure for Rapid Execution of Strike-Planning Systems”. Proceedings of the Winter Simulation Conference, 1995.

West, D; K. Panesar. “Automatic Incremental State Saving” Proceedings of the Conference on Parallel and Distributed Simulation, 1996.

AUTHOR BIOGRAPHIES

Darrin West is a senior computer scientist with SAIC. He received his M.Sc. degree from the University of Calgary. His research interests include parallel simulation and distributed systems. Mr. West is the architect of Tempo and Thema.

David Itkin is a senior software engineer with SAIC. His research interests include parallel and distributed systems, robotics, and computer languages. Mr. Itkin is the project manager for the High Performance Computing FMS-2 project.

Jim Ramsey is a senior software engineer with SAIC. He received his M.Sc. degree from University of Maryland. His research interests include parallel simulation and distributed systems. Mr. Ramsey is the lead designer and implementor of the Tempo system.

Henry C. Ng is the Head of the Visualization and Computing Systems Section of the Advanced Information Technology Branch in Naval Research Laboratory. He is in charge of advanced simulation technology and has been actively involved in simulation and modeling over the past 20 years.
