WIDE VIRTUAL TIME WITH APPLICATION TO
PARALLEL DISCRETE EVENT SIMULATION AND THE HLA RTI.

Darrin West
SAIC
1100 N. Glebe Rd. Suite 1100
Arlington, VA, 22201
west@jade.std.saic.com

John Cleary
University of Waikato
New Zealand
jcleary@waikato.ac.nz

Keywords: Parallel Discrete Event Simulation, Event Ordering, Tie-Breaking, HLA RTI.

ABSTRACT
We present Wide Virtual Time (WVT), a technique that allows repeatable executions of simulations even in distributed implementations. WVT extends the usual notion of simulation time by incorporating additional fields that affect the ordering of events. As well as repeatability WVT has applications to the implementation of multi-part messages, tracing and debugging, as well as multiple-phase of execution at one simulation time. Not all simulations share a common definition of time or of ordering properties. We show how WVT may be integrated into the High Level Architecture (HLA) Run Time Infrastructure (RTI) such that individual federations may redefine WVT properties.
1. INTRODUCTION.

For a simulation infrastructure to be usable across a wide range of applications, it must be general purpose and tailorable to the specific requirements of each application. All discrete event simulation (DES) infrastructures provide the notion of an event that may be scheduled to occur at a discrete point in simulation time. Traditionally, DES infrastructures provide the specification of simulation time, often as a double precision floating point number. The infrastructure is normally also responsible for defining time stamp ordering, including tie breaking and repeatability requirements. However, not all applications share the same definition of simulation time. We present a concept called Wide Virtual Time (WVT) which enables a simulation infrastructure to provide event management services using an application determined definition of simulation time, including type and ordering properties without having to modify the infrastructure for each application.

The DMSO High Level Architecture (HLA) simulation Run Time Infrastructure (RTI) (DMSO 1996) is a simulation interoperability infrastructure. It is to be used across a very wide range of simulation classes making the problem of selecting a single time stamp definition and timestamp ordering even more difficult. We show that WVT may be integrated into the HLA RTI without significant difficulty, or performance penalty.

We start with an analysis of the requirements leading to the need for Wide Virtual Time, then provide a detailed description of the concept. An extensive exploration of different WVT algorithms follows, each of which address different application level requirements for event ordering. An architecture for integrating the concept of Wide Virtual Time into the HLA RTI is then given.

2. REQUIREMENTS.

There are a number of requirements that lead to the need for WVT, and to specific WVT ordering algorithms. Not all of these requirements are needed by any single HLA federation or simulation infrastructure, but their union drives the common design.

Flexibility. Both floating point and fixed point simulation time representations are used in models. Examples include queuing systems (floating point) (Pooch and Wall 1993) and VHDL (64 bit fixed point) (Coelho 1989).

Reproducibility. In order to perform analysis and strict verification, a simulation execution must be able to be reproduced exactly.

Determinism. Similarly in parallel simulation applications, reproducibility needs to be possible even on different configurations (mappings of entities to processors).

High performance. Both real time federations and those that have stricter ordering requirements require reasonable performance levels.

Severability. Federations that don’t use a particular time management feature should not be unduly affected in terms of performance or usability.

Zero delay events. Most discrete event simulations schedule zero delay events between entities.

Network neutrality. The transmission of time values must take into account the various processor types that may exist within a federation.

Distributed RTI components. The ability to create an RTI component that is separated from application code in any federate is desirable. Simple callbacks to the federate will not always be sufficient to manage time.

3. WVT THEORY.

The time at which an event is to be processed (timestamp) is placed in the event message when it is sent (possibly to a different processor). When the event message arrives, it causes an event to be scheduled and executed. Thus both the message and the event have the same timestamp. Events are processed in timestamp order by the entity receiving the event message. The order that events are processed system-wide is therefore determined by either explicit or implicit cooperation of all senders of messages. Primarily, the senders agree about the meaning of simulation time; how much simulation time is consumed in order to model a simulation action, what are the time units, and when time starts in the simulation. They also agree about cause and effect and which events precede others.

Fujimoto presents the local causality constraint, which ensures that no causality errors occur in a simulation. “A discrete event simulation, consisting of logical processes (LPs) that interact exclusively by exchanging timestamped messages, obeys the local causality constraint if and only if each LP processes events in nondecreasing timestamp order.” (Fujimoto 1990) Thus we may address causality, repeatability and many other properties by focussing on timestamp ordering.

The WVT timestamp is a lexicographically ordered tuple containing a number of fields (including the application level simulation time).

Since there are many places in a simulation infrastructure that use and manipulate time, object oriented complexity management suggests that timestamp operations be encapsulated in one place. Examples of uses of timestamps include global minimum time calculations, timestamped subscription requests, object or entity creation, and addition for doing lookahead calculations. Consistent use of WVT allows these and other operations to be ordered with respect to message arrival without creating new synchronization mechanisms.

The following sections describe a number of formats for WVT. Each format solves different ordering and synchronization problems. The integration techniques described in Section 6 allow an appropriate tradeoff between complexity, efficiency and usability for different applications.

4. WVT PRELIMINARIES.

In this section, we present example algorithms for setting and sorting Wide Virtual Times. They each demonstrate various properties that may be needed by different federations. Many of the algorithms have been used in existing distributed simulation systems such as Sim++ (Baezner et al. 1990), Thema (West et al. 1998), and Tempo (West et al. 1995).

One point important in avoiding confusion is the separation of the notion of user or application time (what we refer to as simulation time) from the notion of timestamps (what we refer to as WVT). Simulation time is a representation of time in the system under study. WVT encapsulates simulation time and extends it to include tie breaking fields and other fields useful in causing events to occur in a desired order.

4.1 Implementation Examples.

WVT is an abstract data type. It has associated comparison and addition operators, and is best implemented by a language specific construct such as a Class or Package. In C++, an abstract base class is defined which is sub-classed to implement a comparison operator and a constructor that fills in the tuple. In ADA, a package is used that exposes a comparison function that contains a Private Type. The implementation sub-module defines the function and Private Type. In C, pointer overlays are employed. We will use a double precision floating point type for simulation time in our examples, but fixed point could be used instead.

4.2 Assumptions and Implications.

We assume that there is an agreed upon system wide order for events. This is a reasonable assumption, in that if the order of events is not agreed to, federates will tend to process them in different orders, and divergence of results may occur, where one federate thinks the simulation state is one thing, and others think it is something else. An example of this is when one federate processes all air-to-ground events first, creating conflicts with the ground force’s implementation, and resulting in a disagreement in effectiveness figures. If the federation decides that the order of events does not affect the validity of the simulation, it may specify a WVT that makes those events simultaneous, accepting a non-deterministic order among those events. This relaxes the ordering requirements and tends to improve the performance of the distributed simulation. However, where order is important, it must be imposed uniformly. Obtaining a system wide agreement about that order is critical. This is part of an extended Federation Object Model (FOM) development process.

Once agreement is reached, a federate may still want to process events in a different order. It is possible to receive the messages in the system wide order, buffer them until the wanted set is received, reorder them and process them in a new order but at the latest time of any in the set. The federate becomes responsible for changes in results due to these delays and event permutations.

4.3 NextEventRequestAvailable (NERA).

The DMSO HLA separates a distributed simulation into two components, the RTI and the Federates. Federates may contain many simulation objects (referred to as entities). Federates have a local event list which is processed in timestamp order. A federate needs to merge externally scheduled RTI events into the stream of local events. This is done using the RTI routine NextEventRequestAvailable(W), also referred to as NERA(W) (Fujimoto 1997). We use NERA in an extended form that has a WVT parameter, not the original double precision float.

NERA(W) is called when a federate has its next unprocessed event at time W and wishes to advance federate time (FedTime) to W. If the earliest unreceived RTI message is at time W2, where W2 ≤ W, we refer to the message at W2 as an interrupting message, and the NERA to W is canceled. The RTI returns all available interrupting messages with the same time stamp W2, and advances federate time only to W2. Further messages at time W2 may arrive at a later real time. When there are no interrupting messages, time is advanced to W without returning any messages. If the federate wishes to advance to W after receiving the interrupting messages at W2, it reissues an NERA call to W. After NERA advances FedTime, a federate may legally to send to that WVT FedTime (a zero delay message).

Other RTI time management services that use WVT include LBTS calculation, NextEventRequestAvailable, NextEventRequest, and TimeAdvanceRequest. Lookahead declarations, SendInteraction, and UpdateAttributeValues all expect a WVT value or delta. Future time managed functions such as Data Management and Data Distribution Management subscriptions will also use WVT timestamps.

5. WVT TUPLES AND ORDERING ALGORITHMS.

5.1 Multiple Phases at One Simulation Time.

We first deal with a simple problem. Using only simulation time, it is not possible to process all the events at a given time and then just before advancing the current time to do some processing (including possibly sending messages). For example, it may be desired to pause or do a checkpoint only after all processing at a given simulation time. The difficulty is that if the current time is T then a call to NERA(T) does not guarantee to return all messages at time T, others may arrive later. However if a call is done to a time greater than T, say T’, the FedTime will already be advanced to T’ when the call returns uninterrupted.

In the most general form of the problem some federations need to be able to interact in zero simulation time, collect results, then proceed to another distinct phase of interaction without advancing simulation time. One solution is to exchange synchronization messages to indicate the end of a phase. Using WVT, a phase counter can be used instead, relying on the synchronization provided by the existing time management mechanism. The resulting 2-tuple consists of a double precision floating point receive simulation time followed by an unsigned integer phase counter:
Tuple 1: WVT(Double RcvSimTime, int PhaseCount).

If the current time is WVT(T,P) then any messages must be sent either to a value later than T or back to the same time with a phase greater than or equal to P. It is illegal to send to WVT(T,().

NERA can be used two ways when at current time WVT(T,P). NERA(WVT(T,P+1)) allows all messages at the current phase to be collected before moving to phase P+1 and doing any processing (including sending messages of phase P+1 or higher). Alternatively NERA(WVT(T, ()) will return uninterrupted only when there are no more messages at the current simulation time T. Then “end of current time” processing can be done including sending messages (but only to later simulation times).

In the first case, one may extend the algorithm to avoid receiving messages at WVT(T,P+1) by mandating that no messages may be sent to odd numbered phases. The result is that messages may be handled in non-overlapping groups.

[image: image1.wmf]

(T

,0)

(T

,0)

(T

,1)

(T,

¥

)

(T

,N)

(T+

e,0)

M

2

M

1

M

3

(T-

e,0)

Figure 1: Phased zero delay timeline.

In some cases an integer is excessive for the phase counter. For example, the problem of doing processing only at the end of current time can be accomplished with a one bit phase representing 0 and (.

5.2 The phase can also be used to prioritize messages. High priority messages are sent to a low numbered phase. Care must be taken to not send higher priority messages to the same simulation time when FedTime is at a lower priority, since that would result in sending into a previous phase.

5.3 Reproducible Ordering and Tie Breaking.

A distributed simulation that is executed repeatedly may give different results. This is a serious problem for debugging, validation and verification of both user models and of the simulation infrastructure. The fundamental cause of this lack of reproducibility is that it is not clear in what order to execute two events with the same simulation time destined for the same entity.

In distributed simulators the arrival order of messages from remote processors may be non-deterministic, thus overall execution is non-deterministic. Even if this first form of the problem is solved it may reappear if a distributed simulation is re-run on a different number of processors or using a different mapping of entities to processors. One special configuration is the sequential one when all entities are run on the same processor. It is common for this to produce a different execution order from the distributed versions. Another particularly annoying version of the problem (sometimes called the Heisenbug problem) is when the insertion of messages for debugging alters the order of message arrival and causes the bug to vanish.

For events at the same simulation time, sequential simulators base their execution order on the real time order in which messages are sent. However, two sequential simulators may not agree on their ordering, for example if one of them has a non-stable implementation of its event list.

The following sections show a number of ways that WVT can be used to force the execution order of events to be deterministic. The variants solve different parts of the problem and culminate in the version of Section 5.9. Given the same initial conditions, the results of a simulation will be identical on different configurations including sequential implementations.

5.3.1 Convergence of Messages.

When two messages arrive at an entity with the same timestamp, the tie can be broken by using extra information in the timestamp.

We first consider a 2-tuple consisting of receive simulation time and the sending entity id:

Tuple 2: WVT(double RcvSimTime, int SenderID).

This orders messages within the same receive simulation time giving priority to those messages sent by entities with a lower entity id. It is assumed that each entity has a unique integer identifier. Tuple 2 is insufficient in cases where the same entity sends more than one message to the same application receive time (and the same receiver), even if sent while processing events at different times.

Using the send simulation time instead of the SenderID, we have a 2-tuple of: receive simulation time, send simulation time:

Tuple 3: WVT(double RST, double SST).

This tuple addresses all convergence cases except when there are two similar messages sent from different entities. If we extend the solution to a 3-tuple of receive time, send time and entity id, we have:

Tuple 4: WVT(double RST, double SST,
int SenderID).
This works for all cases other than when there are two messages from same entity at the same send time. To correct for this, a counter is added which is the number of messages sent during the simulation by the sender.

Tuple 5: WVT(double RST, int SenderID,
int SendMCnt).

Tuple 6: WVT(double RST, int SendMCnt,
int SenderID).

Each of these two tuples guarantees that all events have system wide unique timestamps. The SenderID-SendMCnt pair guarantees this. Note that for convergence, we are not concerned with zero delay messages. We consider the addition of that property later in this section (5.2.2).

Another approach replaces the SenderID in approach Tuple 2 with a system wide unique count of sent messages.

Tuple 7: WVT (double RST, int GlobalMCnt).

The cost of updating such a global counter is unreasonably high. If such a counter were in each entity, it may still happen that two senders would send their Nth message to the same entity at the same application receive time making them indistinguishable.

5.3.2 Age Algorithm.

Many applications make use of zero delay messages to simulate insignificant time delays in the system being modeled, or for simulation support messages such as queries, or other kinds of process synchronization or information passing. Many distributed simulation algorithms, such as scheduling and Global Virtual Time (GVT) calculation, assume non-zero delay messages. By extending one of the convergence algorithms, we are able to provide application level zero delay messages while still preserving these internal system requirements, and providing deterministic, causally correct message ordering.

As an example, entity E may be processing message M at time T and generate a message for time T which eventually loops back to entity E (through a zero delay loop of any length). To ensure that causality is maintained message M must be handled prior to any resulting messages for E even though they are at the same simulation time T. We extend WVT to increment a counter for each hop on the zero simulation time loop. This algorithm was first published in (Mehl 1992) as the age-based algorithm, but an extended version of it (see Section 5.8.2) was independently developed and implemented in Sim++ (Lomow et al. 1988) as early as 1988.

The 3-tuple used in the age-based algorithm consists of a double precision floating point number, an integer counter that is referred to as age, and sender entity id, which has a system-wide unique value:

Tuple 8: WVT(Double RST, int Age, EID SenderID).

Each entity contains a local age variable that is incremented before each message is sent (Figure 2). That variable is included as the Age field of the time stamp on a message.

[image: image2.wmf]

(T

,0,A)

B

(T

,1,B)

(T

,2,B)

(T

,3,B)

C

(T

,4,C)

Figure 2: Age variable is incremented per message.

When a message arrives, the Age field is inspected. If it has a larger value than the entity’s local age variable, the local age variable takes the Age of the message (Figure 3). Subsequent messages from that entity are thus guaranteed to have even larger Age values.

[image: image3.wmf]

 (T

,1,A)

 (T

,4,B)

C

(T

,5,C)

Figure 3: Counter takes largest value.

To guarantee repeatability, no two arriving messages may have the same timestamp. The inclusion of the counter value precludes two messages from one source having the same time stamp. To distinguish between messages from two sources with the same SimTime and Counter, the source EntityID is added (Figure 4). SenderID is an integer that uniquely identifies the source.

[image: image4.wmf](T

,1,A)

(T

,1,B)

C

Figure 4: Incoming timestamps are unique.

As a result of this algorithm, entities send to WVT(T,++LocalAgeVariable,SelfId), where the prefix ++ operator means to increment the variable before using it.

The Age field is not intended to be used for multiple phases within a single SimTime. The phase field from Tuple 2 could be included if necessary (a variant is shown in Section 5.8.3, Tuple 15).

All that is required to ensure full determinism of execution using Tuple 8 is that the Entity Id’s be generated deterministically. This can be done by numbering Entities based on a central counter (but this has a significant performance cost), or a hierarchy of counters owned by creation managers that are consistent, and independent of the configuration. One scheme that does not work is to include the processor number and a per processor counter, since they will be affected by changes in the configuration. If creation requests are sent using timestamped messages, the order of creation requests, and therefore, the Entity Ids will be deterministic.

There is one refinement of this algorithm used by Sim++ in Section 5.8.2. The age counter in an event timestamp is set to zero when scheduling an event whose RST is greater than the current simulation time, and uses the local age variable when sending to the current simulation time. The local age variable is reset to zero when the entity’s simulation time advances. The age field now counts the number of messages in the longest zero delay causal chain of events rather than the total number of messages sent by an entity. The send time is also included in the tuple so that the SimTime-Age pair is unique for each entity, giving:

Tuple 9: WVT(double RST, double SST, int Age,
int SenderID).

This age counter arrangement is also better due to overflow properties. 232 events take just over 1 hour at 1 Mevents/sec, which would overflow the standard age counter. However, it is very unlikely that that number of messages would ever be generated from a single point in simulation time. It is also possible to allocate fewer bits to the age field this way. This arrangement is also beneficial for parallel simulation systems that use Lazy Cancellation (Gafni 1988) since on reexecution, the message timestamps are more likely to be reproduced.

5.4 Multipart Messages.

Many implementations of distributed simulations use fixed sized message buffers for memory management reasons such as avoiding fragmentation and for efficient allocation/deallocation, or because of low level communication limitations. Applications do not always share the same limitations and multiple messages may be sent containing the larger amount of application data. Recomposing message parts may be simplified by ordering the packet arrival explicitly. The approaches suggested thus far, while providing deterministic message ordering, would allow these multipart messages to be interleaved with messages from other processes (since the counter is a higher order field).

One solution is to accumulate the multipart message in a buffer while dealing with the interlaced messages. Considering that there could potentially be many ongoing multipart message arrivals, this gets a little messy, and increases the state size of the entity. Not incrementing the age between the parts of the message will ensure all the parts are delivered at one time but not necessarily in the order they were sent (this will depend on the underlying transport mechanism). The problem is completely solved by adding a low order field, the multipart message count, in the least significant position of the tuple.

Tuple 10: WVT(double RST, int Age, int SenderID,
 int MPMC)

MPMC is incremented for each part of the message while leaving Age unchanged. Using this scheme the receiving entity does not need to be concerned about interleaved messages, nor the buffering and reordering of the arriving multipart message.

5.5 Tracing and Output.

It is extremely useful to be able to trace the execution of a distributed simulation or print optional output without affecting the simulation outcome as compared to an untraced execution. When tracing is enabled, each message results in a description of the message being sent to a trace server where it is printed or processed in some other way. The problem can be simplified by assuming that trace-servers or output-servers do not send messages back into the simulation.

This feature is addressed by creating a second local age variable for each entity. The variable counts the number of trace messages sent, in the same way the main age variable counts regular messages. To ensure that no message is sent into the past, the trace age variable must be maxed with the message age. Alternately, the WVT of the original message may be used on the trace message giving it a WVT zero delay timestamp, before forwarding it to the trace server.

5.6 Debugging and Administration.

Using WVT techniques it is possible to have central control of a distributed simulation for the purpose of debugging or probing the simulation, without affecting its outcome. This is impossible in real time systems due to the timing changes caused by the probe messages.

For debugging, it is helpful to be able to break execution before or after handling any given message. During the break, repeated queries for state information may be sent. The debugger may single step through events or through code within an event. It may set flags in the entity directing it to interact with the debugger during application event execution. To better debug the distributed simulation, these controls use timestamped messages so as to be ordered properly with respect to the application messages. The timestamps used must not disturb the order of application messages, therefore a lower order field is injected into WVT. Examples of administrative messages that may also use this field include subscription request messages, or state queries for inspecting the simulation. Tracing or output messages may also use this field. An example 5-tuple follows:

Tuple 11: WVT(double RST, int Age, int SenderID,
 int AdminCount, int MPMC).

The administrative count is set to non-zero intermediate value P0 (e.g. MAXINT/2) for normal application messages. This allows probe/debug/administrative messages to be injected prior to any application messages by using a value less than P0. Likewise, values greater than P0 can be used to gain control after an event has executed. All other fields of the timestamp are identical to the event being probed. The counter allows for multiple messages to be exchanged without misordering them during debugging. Having the multi-part message count at lower significance allows for the reading or resetting of large amounts of entity state data during debugging.

5.7 Application Message Cancellation.

Discrete event simulations often need the ability to cancel or retract the scheduling of an event. The cancellation message must be timestamped with a value less than the time of the original message so that the receiving entity can know to ignore the processing of the event. To avoid buffering of a large number of cancellation requests in the entity, it is beneficial to schedule the cancellation message just prior to the original message. This may be accomplished using Tuple 11, and setting the AdminCount value to be one less than for the application message.

5.8 Query Support.

Process oriented languages (such as Sim++, ModSim, and Import (Wallace et al. 1998)) make use of blocking queries for accessing data from remote processes. The value fetched is returned as if from a function call, suspending the caller until the data is available. If messages other than the query response arrive when the caller is waiting, they are buffered. A cleaner implementation is to guarantee that the query response is the next message that the caller receives, by extending the wide virtual time in the low order position, adding another count and entity id field:

Tuple 12: WVT(double RST, int Age, int SenderID,
 int Age2, int SenderID2).

When sending zero delay, the originator of a zero delay chain is described by (Age,SenderID). This does not change for WVT timestamps used in the course of the zero delay query. Age2 is incremented and SenderID2 is the entity id of the sender of the query response message. This scheme allows an entity to query a set of other Entities in turn.

5.9 Implementation examples.

5.9.1 Real Time.

The HLA RTI has a large class of federations that use only real time. These simulations are concerned primarily about performance. The use of a single double precision floating point or fixed point value for time gives:

Tuple 13: WVT(double SimTime).

5.9.2 Sim++.

It is possible to combine the schemes presented in almost any number of ways to meet the requirements of a given simulation or federation. The Sim++ distributed PDES system uses the fully deterministic approach, the lazy cancellation option of Tuple 9, and had multipart messages. This resulted in a 23 byte WVT defined as follows:

Tuple 14: WVT(double RST, double SST, int Age,
 short SenderID, uchar MPMC).

Sim++ has a separate local age counter for output events which is used for tracing, so tracing may be enabled without affecting event ordering.

5.9.3 JSIMS.

Initial designs for the Joint Simulation System (JSIMS) (Powell 1997) as of January 1998, used an enhanced WVT definition based on Tuple 9. It incorporated administrative messages and end of time support. The age algorithm used is described in Section 5.2.2. The resulting 5-tuple is:
Tuple 15: WVT(double RST, bit EndOfTime, int Age,
 int SenderID, short Admin).

5.9.4 EADTB

The Extended Air Defense Test Bed (EADTB) uses multiple fields to order events in their sequential implementation, and are current investigating parallel simulation techniques. Based on specific EADTB model properties of this information results in repeatable event orders. A WVT tuple to support their needs includes simulation receive time, event type (as a priority), receiving and sending model id, resulting in this 4-tuple:

5.10 Tuple 16: WVT(double RST, short EvType,
 short DestID, short SrcID).
5.11 Implications for Practice.

WVT may be managed entirely in a middleware layer such that a higher level application can manipulate time in terms of simulation time alone. This middleware implements the federation chosen WVT algorithm, and then guarantees that all messages passed from the middleware to the application are deterministically ordered. The middleware may be copied into each federate, saving development costs, or may be reimplemented for each programming language or system in a federation.

A development cycle may use deterministic ordering while developing and debugging. After the simulation development is stable, a higher performance WVT may be swapped in that has less ordering stringency. There is some risk in this procedure that the less deterministic order may lead to message orderings that were not tested during development, resulting in a defective execution.

To achieve reproducible results the computation must use only pseudo-random number generators based on a known initial seed, and must not base any computation on non-deterministic values such as the real time clock which will be different for each simulation execution. Even a single processor execution will have the same results if it uses the same WVT algorithm, allowing us to claim sequential results in a distributed environment. This is an important property of verification, and is often necessary in order to validate a simulation.

6. INTEGRATION WITH THE RTI.

The RTI is intended to allow the creation of an arbitrary federation of simulations. To serve this wide range of applications, the RTI must allow the federation designers to specify the type and contents of the time stamps on interactions and updates that are specific to the needs of that federation, without imposing overheads on all other federations. We present a way to use the flexibility of Wide Virtual Time in the RTI. In this section we discuss an extended RTI implementation with WVT incorporated.

6.1 Bottom Up Requirements.

There are several implementation issues that drive the design of an integration of WVT into the RTI. One is that the RTI must transport the WVT value. Since multiple machine types may participate in an exercise, network neutralization (byte swapping) must occur. The Lower Bound Time Stamp (LBTS) calculation uses lookahead values added to various time advance requests parameters. Thus, the RTI must be able to add WVT stamps together. Since there are several fields, the addition operator must deal with potential overflow of an individual field without carrying into the next more significant field. The performance of these and the comparison operator is a concern. Since WVT operations occur frequently as the RTI executes, it is not practical to use remote procedure calls, for example.

Wide Virtual Times must be initialized to application specific values. Default values for zero and infinity are available to the RTI to initialize internal WVT variables. The WVT initialization function is specific to the tuple used in the WVT algorithm since it takes a parameter per tuple field.

6.2 WVT to RTI Integration Summary.

We replace the current double precision time type with a Wide Virtual Time abstract data type. Everywhere the interface specification talks about time stamps, it is changed to refer to WVT instead of the double.

The Federation Object Model (FOM) and associated files are extended to allow for arbitrary description of the federation specific WVT fields and types. The RTI implementation is extended to include an interpreter of the FOM description of WVT so it can do timestamp comparison, addition, and network neutralization. Compiled specializations of the interpreter base class are included for common WVT formats. Examples include the current double precision type, and another using the age-based tuple. There is a callback version of compiled WVT for high performance non-standard WVT’s so that the federation may implement the operation in each federate or in middleware.

This specification necessarily requires federation wide consensus, but does not need to have a single universal standard shared between members of different federations, since each federation may have unique requirements on its time stamp and ordering algorithm. The specification remains fixed throughout the simulation execution; it is not possible to define ordering and arithmetic operations between timestamps of different formats.

WVT is defined as a block of 24 bytes (or some other compile time determined size). This allows the RTI implementation to allocate a fixed amount of space in messages for more efficient low level communication.

The federate or middleware presents federation specific time types (e.g. an age based application WVT) to the application and is responsible for setting the values of WVT parameters in a federation specific manner.

6.3 Implementation Details.

6.3.1 Interpreter.

The RTI provides an interpreter of the FOM description. Using this interpreter, the RTI walks down the fields of the federation’s definition of WVT to compare timestamps field by field as machine native types. The interpreter does the same thing for the addition operations needed by look​ahead calculations and for the network neutralization operations prior to transmitting the timestamps. The interpreter understands a reasonable selection of basic types, including float, double, int, long long, unsigned int, and unsigned char. The interpreter allows federations to experiment with different formats without having to request changes to the HLA I/F specification nor to make private modifications to the RTI implementation. It allows the RTI to be implemented as multiple distributed modules in separate address spaces, since the FOM description can be transmitted to each module where the interpreter can execute separately from a federate. This avoids the overhead of having to do remote procedure calls to perform comparison or addition operations that might result from a less sophisticated approach.

6.3.2 Compiled Optimizations.

The performance of an interpreter is of concern to many federations. The solution is to provide a set of pre-compiled implementations of WVT operations in the RTI that can be applied to common WVT formats (e.g. double or age based). The RTI, on initialization inspects the FOM and determines whether the described format matches an internally compiled WVT format. If it does, that version is used during the execution.

Callbacks.

If a federation specifies in its FOM a WVT format that does not have a compiled version built into the RTI, the interpreter is used to manage its WVT. It is possible to avoid overheads by using a compiled specialization of the interpreter that performs callbacks from the RTI to registered federate routines. In this way, without the cost of interpretation, federation specific compiled code is executed by the RTI to do comparison, neutralization, and addition of WVT values. Each federate implements these functions. If there are distributed RTI components (e.g. a centralized LBTS calculation server), one may link into it the implementation of the callback code. Note that in this rare case, a piece of the RT would need to be recompiled. It might be just as easy to lobby the Architecture Management Group to add the new tuple algorithm to the provided compiled set, use the interpreter, or configure the RTI to collocate the remote component with a federate and then use callbacks.

6.3.3 Backward Compatibility.

A double precision floating point WVT definition is included in the RTI. It functions identically to the current RTI. It is also possible to use function overloading for the various interface functions to expect a double precision timestamp, creating an optional interface. This allows current users to continue to use the RTI without changes, and allows new users to start without having to create middleware to specify a federation WVT.

6.3.4 Neutralization.

The RTI needs to operate on timestamps in machine native formats, but the timestamps must be transmitted in network neutralized formats. This means that neutralization must occur lower in the communication stack than timestamp operations such as comparison and addition. There are two implementation options. The RTI must know the type of the fields of WVT to be able to perform the timestamp operations and to be able to neutralize the timestamps for transmission. Otherwise the RTI must do neither, and rely on the federate to neutralize the timestamps before passing them into the RTI, but then rely on the federate to do all timestamp operations in machine native formats. Our integration technique allows the federation to choose either option, using callbacks, or using compiled or interpreted techniques.

6.3.5 Object Oriented Techniques.

We have described the WVT to RTI integration using the procedural terms of the RTI I/F. An object oriented approach allows for the manipulation of WVT timestamps as pointers. The WVT class could be subclassed and extended by the application. Each compiled variation could be implemented as a subclassed specialization of the WVT interpreter.

Variable sized WVT timestamps could be developed. The size would be specified in the FOM. WVT values would be copied into transport messages using a C++ stream interface as opposed to a structure copy.
7. SUMMARY.

We have shown the need for Wide Virtual Time in parallel discrete event simulations, and in particular, in simulations federated using the HLA RTI. We have enumerated a large set of different WVT tuples and algorithms to address a number of ordering properties to meet the requirements of the various simulations. We have outlined a flexible approach to incorporate WVT into the RTI.

There are many ordering algorithms possible. A universal one might be developed by incorporating every kind of field, used or not, but it is unlikely that all federations would accept the resulting performance. Supporting multiple definitions is possible. Using WVT, the most general way to do this is to let the federation define and implement the algorithm to be used by all federates. The algorithms tend to be simple enough to reimplement quickly in whatever language a federate is written in.

We have presented a mechanism that allows the WVT tuple to be specified in the FOM. We have proposed a general purpose interpreter of the FOM specification and specific optimized compiled versions and callbacks for improved performance.

8. FUTURE WORK.

The query support mechanism of Section 5.7 does not address the possibility of having the queried Entity querying a third entity in turn. To accomplish that, the WVT would have to be extended further by two fields for each level of recursion. This is clearly not very satisfactory. An elegant solution to recursive queries is still waiting for a solution.

With respect to priority fields mentioned at the end of Section 5.1, the ability to schedule a higher priority message at the same RcvSimTime while processing a lower priority message is a property that still needs a solution. The approach of breaking the priority field into several fields, one for each priority level leads to issues similar to the query message problem above with regard to indefinite regression. It appears that it may not be possible to solve either of these problems with a fixed size WVT. A proof of that fact would be helpful.

9. The extended RTI implementation discussed in Section 6 has not yet been implemented. RTI specific interface and semantic issues would be revealed by such an effort.

ACKNOWLEDGEMENTS.

10. Many of the algorithms and tuples presented in this paper were collected from various projects over many years working at Jade Simulations. Some of the requirements were identified at AMG TMWG meetings. The combination of an interpreted, compiled, callback scheme was suggested by Russ Noseworthy of Object Sciences Corporation at one meeting in response to being asked to choose only one. Funding for this paper and attendance at AMG meetings was provided by the DARPA ASTT program lead by Dell Lunceford.

REFERENCES.

D. Baezner, G. Lomow, and B. Unger. “Sim++: the Transition to Distributed Simulation.” In the Proceedings of the 1990 SCS MultiConference on Distributed Simulation. 1990.

David Coelho “The VHDL Handbook”, ISBN 0-7923-90310-8, Kluwer Academic Publishers, 1989.

Defense Modeling and Simulation Office, “HLA Interface Specification 1.0”, August 1996.

R. M. Fujimoto. “Parallel Discrete Event Simulation.” Communications of the ACM 33(10), pp. 30-53. 1990.

R. M. Fujimoto “Zero Lookahead And Repeatability In The High Level Architecture”, Proceedings of the 1997 Spring Simulation Interoperability Workshop.

A. Gafni: “Rollback mechanisms for optimistic distributed simulation systems” In Proceedings of the SCS MultiConference on Distributed Simulation. V19, #3 (July 1988). pp. 61-67.

G. Lomow, J. Cleary, B. Unger, D. West “A performance Study of Time Warp”, Proc. Of the SCS MultiConference on Distributed Simulation. V19, #3, July, 1988.

H. Mehl: “A deterministic Tie-Breaking Scheme for Sequential and Distributed Simulation” Proceedings of the 6th Parallel and Distributed Simulation Conference, SCS Vol. 24, #3, pp. 199-200. 1992.

U. N. Pooch, and J. A. Wall. “Discrete Event Simulation (A Practical Approach).” CRC Press. 1993.

E. Powell. “The JSIMS Architecture”, Proceedings of the 1997 Spring Simulation Interoperability Workshop, 97S-SIW-078, March 1997.

J. Wallace, G. Leonard, L. Peterson, A. Vagus, C. Kropp. “Using Import to Develop Wargames.” In the Proceedings of Western MultiConference (OOS) January 1998.

D. West; L. Mellon; J. Ramsey; J. Cleary; and J. Hofmann. “Simulation Infrastructure for Rapid Execution of Strike-Planning Systems”. Proceedings of the Winter Simulation Conference, 1995.

D. West, D. Itkin, J. Ramsey, and H. Ng. “Event Distribution and State Sharing in the Thema Parallel DES Modeling Framework” In the Proceedings of Western MultiConference (OOS) January 1998.

AUTHOR BIOGRAPHIES.

DARRIN WEST is a senior computer scientist with SAIC. His research interests include distributed systems and parallel simulation. He is the technical lead for various Thema and Tempo projects funded through DARPA, JSIMS, and HPCMO. He was previously the chief architect for the Sim++ system at Jade Simulations.
JOHN CLEARY is currently a full Professor in the Department of Computer Science at the University of Waikato in New Zealand. He received his Ph.D. from the Dept. of Electrical Engineering at the University of Canterbury, New Zealand in 1980. His current research interests include parallel and distributed simulation, optimistic algorithms and their application to CPU design, temporal logic programming, interval arithmetic constraints, and applications of complexity theory to data compression and machine learning.
_949762409.doc

(T,1,A)

(T,4,B)

C

(T,5,C)

_955355464.doc

(T,0)

(T,0)

(T,1)

(T,()

(T,N)

(T+

M1

M2

M3

(T-

_955367565.doc

 (T,1,A)

 (T,4,B)

C

(T,5,C)

_949762461.doc

(T,1,A)

(T,1,B)

C

_949762243.doc

(T,0,A)

B

(T,1,B)

(T,2,B)

(T,3,B)

C

(T,4,C)

